首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water clusters (H2O)6 are simulated by the Monte Carlo method with the Metropolis function at various temperatures (T 1 = 273 K, T 2 = 298 K, and T′1= 373 K) and densities (ρ1 = 0.9998 g/cm3, ρ2 = 0.9167 g/cm3, and ρ3 = 0.00059 g/cm3) of the system. It is established that the number of retained most probable configuration types at ρ1 = 0.9998 g/cm3 during temperature transitions from T 1 = 273 K to T 2 = 298 K and from T1 = 373 K to T 2 = 298 K is smaller than at ρ3 = 0.00059 g/cm3. This result was acquired on the background of the following invariable parameters of the system with the same temperature transitions for each of three values of density: (i) the average number of retained most probable configuration types, (ii) the average fraction of weight coefficients of the most probable configuration types, and (iii) the average potential energy. The configuration type that was retained among the most probable configuration types of the system for all values of density (ρ1 = 0.9998 g/cm2, ρ2 = 0.9167 g/cm3, and ρ3 = 0.00059 g/cm3) of the system for temperature transitions from T 1 = 273 K to T 2 = 298 K and from T1 = 373 K to T 2 = 298 K was also revealed.  相似文献   

2.
Within the two-dimensional CPn?1 model we calculate the instanton density function in the dilute-gas limit by studying the quantum fluctuations in the one-instanton sector in the one-loop approximation. The result disagrees with the 1n expansion. Green functions in the one-instanton background are displayed.  相似文献   

3.
The sums of products of Coulomb wave function over degenerate states are expressed in terms of quadratic forms that depend on the wave function of only one state with zero orbital angular momentum l = m = 0. These sums are encountered in many fields in the physics of atoms and molecules, for example, in investigations of the perturbation of degenerate atomic energy levels of a small potential well, a delta-function potential. The sums were found in an investigation of the limit of the Coulomb Green’s function G(r, r′, E), where the energy parameter E approaches an atomic energy level: EE n , E n = ?Z 2/2n 2. The Green’s function found by L. Hostler and R. Pratt in 1963 was used. The result obtained is a consequence of the degeneracy of the Coulomb energy levels, which in turn is due to the four-dimensional symmetry of the Coulomb problem.  相似文献   

4.
We consider the integrated density of states (IDS) ρ(λ) of random Hamiltonian Hω=?Δ+Vω, Vω being a random field on ? d which satisfies a mixing condition. We prove that the probability of large fluctuations of the finite volume IDS |Λ|?1ρ(λ, HΛ(ω)), Λ ? ? d , around the thermodynamic limit ρ(λ) is bounded from above by exp {?k|Λ|},k>0. In this case ρ(λ) can be recovered from a variational principle. Furthermore we show the existence of a Lifshitztype of singularity of ρ(λ) as λ → 0+ in the case where Vω is non-negative. More precisely we prove the following bound: ρ(λ)≦exp(?kλ?d/2) as λ → 0+ k>0. This last result is then discussed in some examples.  相似文献   

5.
The 2D resonant Fermi gas with p-wave pairing is considered n the BCS-BEC regime. For the 2D analog of the superfluid A1 phase, the Leggett equations [1] for superfluid gap Δ and chemical potential μ are analytically solved at T = 0 and the spectrum of the collective excitations (acoustic waves) is analyzed in the BCS regime (μ > 0), where the triplet Cooper pairs emerge; in the BEC regime (μ < 0), where the triplet local pairs (molecules) emerge; and in the transition region, where μ → 0. At low temperatures, the contribution of the superfluid Fermi quasiparticles of the resonant gas to heat capacity C v and the density of normal component ρn is also calculated. At μ = 0, the fermionic contribution to ρn and C v are represented as power functions of temperature (ρnT 3 and C v T 2). However, similar power contributions to these quantities are related to phonons (bosonic acoustic oscillations). The possibility of the experimental observation of the nontrivial topological term with the charge Q = 1 in the BCS regime of the 2D A1 phase is briefly discussed.  相似文献   

6.
《Nuclear Physics B》1988,295(4):571-585
The dispersion expansion for the two-point electric correlation function in the eight-vertex model is calculated to first order in the four-spin coupling in the scaling limit in the high-temperature regime. It is found that there is a close relation between the Tc and Tc+ spin-spin-energy density correlation function in the Ising model. This is used to simplify tremendously the calculation in the Tc+ case; the result can be obtained from the Tc result by deleting two variables in the expansion.  相似文献   

7.
《Nuclear Physics B》1997,504(3):665-700
Massive field theory at fixed dimension d < 4 is combined with the minimal subtraction scheme to calculate the amplitude functions of thermodynamic quantities for the O(n) symmetric Φ4 model below Tc in two-loop order. Goldstone singularities arising at an intermediate stage in the calculation of O(n) symmetric quantities are shown to cancel among themselves leaving a finite result in the limit of zero external field. From the free energy we calculate the amplitude functions in zero field for the order parameter, specific heat and helicity modulus (superfluid density) in three dimensions. We also calculate the q2 part of the inverse of the wavenumber-dependent transverse susceptibility χT(q) which provides an independent check of our result for the helicity modulus. The two-loop contributions to the superfluid density and specific heat below Tc turn out to be comparable in magnitude to the one-loop contributions, indicating the necessity of higher-order calculations and Padé-Borel type resummations.  相似文献   

8.
The (flavor non-singlet) probability Φ(k) to find a far-off-shell quark in a hadron is obtained in the renormalization group improved ladder model for QCD in the space-like axial gauge in the region kT2??2k·P, extending an earlier result for the region kT2≈?2k·P. The resulting Drell-Yan cross section at measured QT agrees in the appropriate limit with that given by Parisi and Petronzio (and disagrees with the DDT form). By using a soft photon method in an abelian gauge theory, I argue that ladder diagrams with strong ordering of gluon q· P's in fact dominate Φ(k) in the high-energy limit considered.  相似文献   

9.
《Nuclear Physics B》1996,469(3):419-444
The pressure and the energy density of the SU(3) gauge theory are calculated on lattices with temporal extent Nτ = 4, 6 and 8 and spatial extent Nσ = 16 and 32. The results are then extrapolated to the continuum limit. In the investigated temperature range up to five times Tc we observe a 15% deviation from the ideal gas limit. We also present new results for the critical temperature on lattices with temporal extent Nτ = 8 and 12. At the corresponding critical couplings the string tension is calculated on 324 lattices to fix the temperature scale. An extrapolation to the continuum limit yields Tc/√σ = 0.629(3). We furthermore present results on the electric and magnetic condensates as well as the temperature dependence of the spatial string tension. These observables suggest that the temperature dependent running coupling remains large even at T ≅ 5Tc. For the spatial string tension we find √σs/T=0.566(13)g22(T) with g2 (5Tc) ≅ 1.5.  相似文献   

10.
The behavior of the electrical resistivity ρ(T), the superconducting transition temperature T c , and the upper critical field H c2(T) of a polycrystalline sample of YNi2B2C irradiated by thermal neutrons with the subsequent high-temperature isochronous annealing in the temperature interval T ann = 100–1000°C has been studied. It has been found that the irradiation of YNi2B2C with a fluence of 1019cm?2 leads to the suppression of the superconductivity. The final disordered state is reversible; i.e., the initial ρ(T), T c , and H c2(T) values are almost completely recovered upon annealing at up to T ann = 1000°C. The quadratic dependence ρ(T) = ρ0 + a 2 T 2 is observed for the sample in the superconducting state (T c = 5.5?14.5 K). The coefficient a 2 (proportional to the square of the electron mass m*) hardly changes. The form of the dependence of T c on ρ0 can be interpreted as the suppression of the two superconducting gaps, Δ1 and Δ21 ~ 2Δ2). The degradation rate of Δ1 is about three times higher than that of Δ2. The dependences dH c2/dT on ρ0 and T c may be described by the relations for a superconductor in the intermediate limit (the coherence length ζ0 is on the order of the electron mean free path l tr) under the assumption of a nearly constant electron density of states on the Fermi level N(E F). The observed behavior of T c obviously does not agree with the widespread opinion about the purely electron-phonon mechanism of superconductivity in the compounds of this type supposing the anomalous type of superconducting pairing.  相似文献   

11.
H. Sazdjian 《Few-Body Systems》2012,53(1-2):111-116
We study, in two-dimensional QCD and in the large-N c limit, the properties of the gauge invariant quark Green’s function, defined with a path-ordered phase factor along a straight line. The analysis is done by means of an exact integrodifferential equation. The Green’s function is found to be infrared finite, with singularities represented by an infinite number of threshold type branch points with a power ?3/2, starting at positive mass squared values. Its expression is analytically determined.  相似文献   

12.
Bulk samples of oriented carbon nanotubes were prepared by electric arc evaporation of graphite in a helium environment. The temperature dependence of the conductivity σ(T), as well as the temperature and field dependences of the magnetic susceptibility χ(T, B) and magnetoresistance ρ(B, T), was measured for both the pristine and brominated samples. The pristine samples exhibit an anisotropy in the conductivity σ(T)/σ>50, which disappears in the brominated samples. The χ(T, B) data were used to estimate the carrier concentration n 0 in the samples: n 0ini ~3×1010 cm?2 for the pristine sample, and n 0Br~1011 cm\t—2 for the brominated sample. Estimation of the total carrier concentration n=n e+n p from the data on ρ(B, T) yields n ini=4×1017 cm?3 (or 1.3×1010 cm?2) and n Br=2×1018 cm?3 (or 6.7×1010 cm?2). These estimates are in good agreement with one another and indicate an approximately fourfold increase in carrier concentration in samples after bromination.  相似文献   

13.
The spectral acoustic phonon emission intensity of the hot quasi two-dimensional electron gas (2DEG) in quantized n-Si (GaAs) inversion layers is calculated as a function of the phonon angular frequency w at different values of the carrier temperature Te and density Ns. In the long wave length limit (ℏwkBTe) the emission intensity increases ∝ ws(ws+1) for bulk- (surface-) modes where s = 3 for the unscreened acoustic deformation potential coupling. At wvj2kF (vj: sound velocity of the phonon mode j, kF: radius of the Fermi-circle) the emission intensity reaches a maximum whose position is shifted to higher w-values if Ns increases. For given values of Ns, Te, T (lattice temperature) and ϑ (emission angle) the emission intensity maximum of the n-GaAs inversion layer is found to be about one order of magnitude smaller than the intensity maximum of the n-Si inversion layer.  相似文献   

14.
General relativity is formulated in the framework of Yang-Mills theory whose gauge group isO(3, 2). This theory allows the global topological charge of spin without breaking Bianchi identity. β function in the renormalization group equation is negative and the confinement of gravity is expected. The confinement radius is, however, actually infinite and we can read off the relation that the average mass density of the present universe is exactly equal to the critical value ρ c (t)=6H 2(t)/K 2.  相似文献   

15.
The absorption coefficient K of a quasi two dimensional (2D) hot free electron gas is calculated for the first time as a function of the lattice temperature T, the photon angular frequency w, the carrier density Ns as well as the electron temperature Te when the carriers are scattered by ionized impurities, acoustic phonons and polar optical phonons. Analytical expressions are derived in the limiting cases of non-degeneracy and degeneracy of the electron system. In the quantum limit ħw/kBTe ≳ 1 where the interaction between the electron and the photon is inelastic K sensitively depends on the limiting scattering mechanism showing that the electron motion is completely controlled by the photon field. In the classical limit ħw/kBTe ⪡ 1 the absorption decreases proportional to w1 independent of the limiting scattering mechanism in agreement with the experimental data deduced from far-infrared absorptivity measurements on GaAs heterolayers.  相似文献   

16.
Mean-field equations describing the metal-insulator (MI) transition are formulated. They involve two coupled order parameters characterizing this transition: (i) a scalar order parameter describing the density change accompanying the transition from the insulating state to the metallic one and (ii) an order parameter (a two-component vector) describing the electron density in the metallic or semimetallic phase affected by the applied magnetic field. Two components of this vector correspond to different possible spin states of electrons in the applied magnetic field. The transition in the density of metallic and insulating phases being a first order phase transition is treated in terms of the Cahn-Hilliard-type gradient expansion. The transition in the electron density is a second order phase described by the Ginzburg-Landau-type functional. The coupling of these two parameters is described by the term linearly dependent on the electron density n in the metal with the proportionality factor being a function of the density of the metallic phase. The derived equations are solved in the case of the MI interface in the presence of both parallel and perpendicular uniform magnetic fields. The calculated surface tension Σmi between the metallic and insulating phases has a singular behavior. In the limit of zero electron density n ? 0, Σmin 3/2. Near the MI transition point T c(h) in the applied magnetic field, Σmi ~ [T - T c(h)]3/2. The singular behavior of the surface tension at the MI interface results in the clearly pronounced hysteresis accompanying the transition from the insulating to metallic state and vice versa.  相似文献   

17.
This paper reports on the results of an investigation into the effect of irradiation of the Bardeen-Cooper-Schriefer superconductor MgB2 by electrons with a mean energy ē ~ 10 MeV at low doses (0 ≤ Φt ≤ ~5 × 1016 cm?2) on the lattice parameters, the intensity and width of diffraction lines, the superconducting transition temperature T c , and the temperature dependence of the resistivity ρ(T) in the normal state. The results of structural investigations have revealed regularities in the defect formation in the magnesium and boron sublattices of the MgB2 compound as a function of the electron fluence. At the initial stage, irradiation leads to the formation of vacancies, originally in the magnesium sublattice and then in the boron sublattice. For fluences Φt ≥ ~1 × 1016 cm?2, vacancies are formed in both sublattices. The evolution of the electrical and physical properties [T c , ρ273 K, residual resistivity ratio RRR = ρ273 K50 K, parameters of the dependence ρ(T)] under electron irradiation is in agreement with the regularities revealed in the formation of radiation-induced defects in the crystal lattice of the MgB2 compound.  相似文献   

18.
The derivative of the Quantum Hall resistance, ρxy, with respect to the carrier density, n, has been measured for a two-dimensional electron gas in a GaAs-AlxGa1?xAs heterostructure, as a function of magnetic field. dρxy/dn exhibits a remarkable similarity to the diagonal resistivity, ρxy, to the extent that one is almost directly proportional to the other. Our result suggests the possibility of a fundamental connection between the two quantities.  相似文献   

19.
We analyze the Dyson equation/Ward identity system for the axial gauge n · A = 0 gluon propagator Δμν(q)whenn · q = 0. The solution behaves like (q?4 + (q2)ν?1) for small q2, and we are able to calculate the power ν analytically. It turns out to be 0.1737. This analytic calculation verifies our earlier numerical solutions to these equations. For static problems, n · q = 0 is the temporal gauge, and in this gauge the gluon propagator is directly related to the color dielectric constant. We can thus calculate the dielectric constant in the infrared limit.  相似文献   

20.
The thermostatic properties of symmetric nuclear matter are calculated by extension of a recent Thomas-Fermi approach to ground-state nuclei by Myers and Swiatecki [1]. We have computed the free energy per nucleon f(T, n) in Landau's quasiparticle approximation and have derived from it the relevant thermostatic properties. In view of its application to finite excited nuclei, the degenerate limit of nuclear matter is discussed in particular. As an interesting result we find at higher temperatures van-der-Waals-like isotherms in the p-n plane. Below the critical temperature Tc = 17.3 MeV two phases of nuclear matter, liquid and vapour, are defined by these. Comparing these results with the reduced phase transition data of 3He, 4He, and “inert gases,” we find that nuclear matter is similar to the He-isotopes, but differs considerably from the inert gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号