首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, photophysical behavior, and anion-sensing ability of a fluorescent molecular system, N-(3-methoxy-4-oxo-2-phenyl-4H-chromen-7-yl)-benzamide (1H), designed and developed with a view to sensing fluoride ions, are reported. NMR and density functional studies on the system have been carried out to determine the nature of the interaction between 1H and X- (X = halogen atom) responsible for fluoride-induced dramatic changes in the absorption and emission properties of 1H. The color change of 1H, which can be observed by the naked eye, is found specific to fluoride ion; it is unaffected by the presence of a large excess of Cl-, Br-, and I-, thus rendering 1H as a selective fluoride ion sensor in micromolar concentration in the visible region. The changes in the fluorescence behavior of 1H, specifically, the formation of an additional long-wavelength emission band in the presence of fluoride ion, allow ratiometric fluorescence signaling of the fluoride ion as well. The results suggest that abstraction of the acidic proton of 1H by the F- leading to the formation of 1- is responsible for the spectral changes that allow signaling of the F-. Density functional calculations of the optimized geometrical parameters and charge densities of the 1H...halide complexes confirm the proton abstraction mechanism of the signaling of F-. Calculations of the transition energies of the 1H, 1-, and 1H...F- (hydrogen-bonded complex) show that only 1- is responsible for the long-wavelength absorption and emission band observed in the presence of F-.  相似文献   

2.
A novel visible colorimetric sensor (L1) with high selectivity for fluoride ion based on coumarin has been synthesized by a simple modification of our earlier report. The chemosensor L1 shows an obvious color change from yellow to blue upon addition of fluoride ion with a large red shift of 145 nm in acetonitrile, and without interference of other anions such as Cl-, Br-, I-, NO3-, H2PO4-, HSO4-, and AcO-. The investigation of 1H NMR spectrum titration indicates the proposed mechanism is that F- first establishes a hydrogen bonding interaction with L1, and then the formation of [F-H-F]- induces deprotonation.  相似文献   

3.
A colorimetric and fluorescent fluoride probe bearing phenolic hydroxy and imine groups has been designed and synthesised. This receptor could visually and spectroscopically recognise F with high selectivity over other anions. After the addition of fluoride ions to the solution of ([1,1′-biphenyl]-4,4′-diylbis (azanylylidene)) bis (methanylylidene)) bis (naphthalen-2-ol) (TY), since the deprotonation reaction occurred between the sensor and fluoride, the fluorescence intensity of the solution changed significantly. Furthermore, the quenched fluorescence caused by fluoride ions could be recovered upon the addition of calcium ions to this complex solution. This resulted in an ‘OFF-ON-OFF’ type sensing. In particular, an IMP logic gate has been proposed using the output obtained from the fluorescence studies. The fluorescence, UV-vis titration and 1H NMR titration experiments indicated that the effects might occur via a combined process including hydrogen bond and deprotonation between the sensor and F.  相似文献   

4.
Tetrakis-(4-carbamoylphenyl)-substituted and tetrakis-(4-amidophenyl)-substituted calix[4]arenes as well as the monomeric biphenylcarbamate have been synthesized as fluorescent receptors for anion sensing. Their binding properties with various anions including F-, CH3COO-, Ph-COO-, and H2PO4- were investigated by fluorescence titrations, Job plot experiments, 1H NMR spectroscopies, and ESI-MS measurements. Importantly, we have found that calix[4]arene-based sensors exhibit greatly enhanced binding affinity and selectivity toward carboxylates. The binding associations of tetrakis-(4-carbamoylphenyl)-substituted calix[4]arene for carboxylates are 1-2 orders of magnitude greater than those of the monomeric biphenylcarbamate sensor. Such an enhancement in the binding affinity and selectivity is attributed to the cooperative binding of the multiple ligating groups as revealed from the ab inito DFT calculations. Although tetrakis-(4-amidophenyl)-substituted calix[4]arene exhibited relatively weaker binding affinity toward anions, its superior binding selectivity for acetate ion over fluoride ion is evident. Our results also suggest that carbamate functionality is a useful H-bond donor for hydrogen-bonding interactions in molecular recognition and supramolecular chemistry.  相似文献   

5.
喻艳华  付成 《化学研究》2014,(5):482-487
研制了一种用于灵敏、快速地检测溶液中的氟离子的基于苯并噻二唑衍生物的荧光传感器.4,7-二溴-2,1,3-苯并噻二唑与三甲基硅基乙炔通过Sonogashira偶联反应得到二取代的三甲基硅基乙炔苯并噻二唑;将该化合物用于检测氟离子,分析了检测灵敏度和选择性.结果表明,在乙腈和水(V/V=9∶1)混合溶液中,合成的苯并噻二唑衍生物的最大发射波长峰值为455nm(激发波长为376nm);就所测试的F-,Cl-,Br-,I-,ClO4-,AcO-,NO3-,H2PO3-,CN-和HSO4-等阴离子而言,仅F-可以脱除三甲基硅保护基使得该化合物荧光最大发射波长蓝移至435nm,荧光强度降低60%,且最低检测限可达4.5×10-8 mol/L.因此,二取代的三甲基硅基乙炔苯并噻二唑应用于氟离子检测具有很好的灵敏度和选择性.  相似文献   

6.
Ratiometric sensing of fluoride anions based on a BODIPY-coumarin platform   总被引:1,自引:0,他引:1  
Cao X  Lin W  Yu Q  Wang J 《Organic letters》2011,13(22):6098-6101
Based on a new coumarin-BODIPY platform, compound 4 was rationally designed and synthesized as a novel ratiometric fluorescent sensor for fluoride anions. The sensor exhibited a large red shift (88 nm) in absorption and a drastic ratiometric fluorescent response (I(472)/I(606) = 17.4) to fluoride anions. Density function theory and time-dependent density function theory calculations were conducted to rationalize the optical response of the sensor.  相似文献   

7.
A novel indole Hydrazone receptor 1 has been synthesized by one step of condensation, which can act as an efficient colorimetric and "turn on" fluorescent sensor for fluoride anions; Benesi-Hildebrand equation indicates that 1 associates with F(-) in a 1:1 stoichiometry; [TBA]OH and (1)H NMR titration experiments indicate that the deprotonation process involved upon addition of fluoride anions.  相似文献   

8.
A colorimetric and ratiometric fluorescence anion sensor 1 was designed and synthesized according to site-signalling subunit approach. The sensor exhibited visible color changes from yellow to purple upon addition of the strong basic anions such as acetate. The ratiometric fluorescence changes with significant blue shift about 140 nm were observed during the fluorescence titrations. Such ratiometric fluorescence changes could be due to inhibition of excited-state intramolecular proton transfer (ESIPT). The 1H NMR titrations indicated that the sensor 1 showed deprotonation in presence of large amounts of acetate ion. Therefore, ESIPT was inhibited owing to presence of deprotonation of phenol unit.  相似文献   

9.
A new thiacalix[4]arene based fluorescent sensor 1 bearing two naphthyl groups has been synthesized in 1,3-alternate conformation. In the absence of fluoride ion, the receptor 1 is in ‘off-state’ showing no fluorescence emission. The presence of fluoride ion triggered the fluorescence emission to ‘on-state’. The receptor shows pronounced selectivity for fluoride ions. In THF, the presence of F ions induces the formation of a 1:1 (G:H) complex.  相似文献   

10.
A newly designed probe, 6-thiophen-2-yl-5,6-dihydrobenzo[4,5]imidazo-[1,2-c] quinazoline (HL(1)) behaves as a highly selective ratiometric fluorescent sensor for Fe(2+) at pH 4.0-5.0 and Fe(3+) at pH 6.5-8.0 in acetonitrile-HEPES buffer (1/4) (v/v) medium. A decrease in fluorescence at 412 nm and increase in fluorescence at 472 nm with an isoemissive point at 436 nm with the addition of Fe(2+) salt solution is due to the formation of mononuclear Fe(2+) complex [Fe(II)(HL)(ClO(4))(2)(CH(3)CN)(2)] (1) in acetonitrile-HEPES buffer (100 mM, 1/4, v/v) at pH 4.5 and a decrease in fluorescence at 412 nm and increase in fluorescence at 482 nm with an isoemissive point at 445 nm during titration by Fe(3+) salt due to the formation of binary Fe(3+) complex, [Fe(III)(L)(2)(ClO(4))(H(2)O)] (2) with co-solvent at biological pH 7.4 have been established. Binding constants (K(a)) in the solution state were calculated to be 3.88 × 10(5) M(-1) for Fe(2+) and 0.21 × 10(3) M(-1/2) for Fe(3+) and ratiometric detection limits for Fe(2+) and Fe(3+) were found to be 2.0 μM and 3.5 μM, respectively. The probe is a "naked eye" chemosensor for two states of iron. Theoretical calculations were studied to establish the configurations of probe-iron complexes. The sensor is efficient for detecting Fe(3+)in vitro by developing a good image of the biological organelles.  相似文献   

11.
A new series of 2,5-bis(4-methylphenyl)-1,3,4-oxadiazole derivatives containing various substituted groups on the ortho-position to oxadiazole ring was synthesized and their fluorescent sensor properties were investigated. The fluorescent sensor molecules showed UV absorption shift as well as fluorescence emission shift upon exposure to fluoride anion in DMF solution, which was considerably dependent on the substituent attached on the phenyl group. The new sensory compound, 1d can be used as a fluoride anion sensor in terms of naked-eye detection and fluorescent sensing with high selectivity.  相似文献   

12.
设计合成了8个1,5-二芳基-3-(2-羟基-4,6-二甲氧基苯基)-2-吡唑啉化合物4a~4h. 它们的结构经由IR、1H NMR、MS和元素分析确认. 测定了它们的紫外光谱和荧光光谱, 研究了它们对氟离子的选择性识别作用, 发现化合物4a,4c和4d均可选择性地识别氟离子, 其中4a和4c作为识别氟离子的荧光探针, 受常见离子干扰较小, 选择性较高.  相似文献   

13.
A novel fluorescent sensor composed of a naphthalene functionalized tetraazamacrocycle ligand 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3-methyl naphthalene (1) and Zn(2+) has been designed and prepared, which can be utilized for selective and ratiometric sensing of pyrophosphate (PPi) over other phosphate-containing anions in aqueous solution at physiological pH. Notably, the water soluble 1 itself also exhibits a selective enhanced fluorescent response to Zn(2+), and the complex 1-Zn(2+) thus formed eventually fulfils the synergic Zn(2+) coordination-altered strategy with PPi. Furthermore, the ratiometric sensing of 1-Zn(2+) towards PPi performed well even in blood serum milieu. Finally, the sensor 1-Zn(2+) was successfully employed to monitor a real-time assay of inorganic pyrophosphatase (PPase) by means of ratiometric fluorescent measurements for the first time.  相似文献   

14.
A new colorimetric and fluorimetric chemosensor for F detection based on 1H-imidazo[4,5-b]phenazine derivative has been designed and synthesized.It shows excellent fluorescent specific selectivity and sensitivity for F in DMSO solution.Upon addition of F to the solution of probe 1,a remarkable color change from yellow to red could be observed easily by the naked-eye.The detection limit of this probe toward F is 6.2 10 6mol/L.Analysis by1 H NMR proved that the imidazolyl N–H could be hydrogen-bonded with added fluoride anions,and results in the difference of colors.  相似文献   

15.
A new donor-π-acceptor (D-π-A) type isophorone dye was synthesized by the condensation reaction between 2-(3,5,5-trimethylcyclohex-2-enylidene)-malononitrile and indole-3-carboxaldehyde. The chemical structure of the dye was characterized by 1H NMR, EA and MS. A novel, chromogenic, fluorescent dye based on indol as donor unit and isophorone as acceptor unit displayed marked UV-visible absorption changes and highly selective fluorescence quenching in the presence of fluoride ion. The dye also exhibited sizeable colour changes when used as a pH-induced molecular switch and as a detector for volatile organic compounds. The absorption and fluorescent intensity of the dye can be reversibly selected by protonation/deprotonation of the amine moiety via control of intramolecular charge transfer (ICT), leading to a molecular switch with "on" and "off" states.  相似文献   

16.
Development of fluorescent chemical sensors for fluoride is important due to increased use of fluoride in environment. A fused bis[2-(2′-hydroxyphenyl)benzoxazole] 5, which is capable of giving ESIPT emission, is found to be a useful fluorescent sensor for fluoride detection. Upon binding to fluoride, bis(HBO) 5 shows a large spectral shift in both fluorescence (from ~490 nm to ~440 nm) and absorption (from 353 nm to 392 nm). In comparison with the isomeric 4, bis(HBO) 5 dramatically improves the sensitivity in fluoride binding (by an order of magnitude), revealing a large impact of regiochemistry on the sensor performance. 1H NMR has been used to study the fluoride binding, and to correlate the intramolecular hydrogen bonding with the fluoride response. Sensitivity of 5 towards fluoride is as low as 10?5 M. Bis(HBO) 5 also showed excellent selectivity towards fluoride while being silent to other anions (Cl?, Br?, HS? and PO43?), thus making 5 a potentially useful probe.  相似文献   

17.
Zhang JF  Lim CS  Bhuniya S  Cho BR  Kim JS 《Organic letters》2011,13(5):1190-1193
A naphthalimide-based highly selective colorimetric and ratiometric fluorescent probe for the fluoride ion displayed both one- and two-photon ratiometric changes. Upon reaction with the F(-) (TBA(+) and Na(+) salts) anion in CH(3)CN as well as in aqueous buffer solution, probe 1 shows dramatic color changes from colorless to jade-green and remarkable ratiometric fluorescence enhancements signals. These properties are mechanistically ascribed to a fluoride-triggered Si-O bond cleavage that resulted in a green fluorescent 4-amino-1,8-naphthalimide.  相似文献   

18.
本文利用F~-诱导Si-O键断裂原理,以亚胺香豆素为荧光母体,成功合成了一种比色和荧光增强型F~-探针。由于探针分子结构的自由度较大,探针分子在乙腈溶液中几乎没有荧光,但随着F~-的加入探针分子经历Si-O键断裂及成环反应,生成具有较大共轭结构的环化产物,其荧光光谱在452nm处呈现出显著的荧光峰(荧光增强46倍),溶液的最大吸收峰由315nm红移至410nm(红移95nm),溶液的颜色由无色变为黄色,适用于裸眼检测F~-。同时,相对于其他阴离子(Cl~-、Br~-、I~-、NO_3~-、HSO_4~-、ClO_4~-、Ac~-、H_2PO_4~-),探针分子表现出对F~-较高的选择性和专一性,为F~-浓度的监测提供了一种高效灵敏的分析方法。  相似文献   

19.
A convenient supramolecular strategy for constructing a ratiometric fluorescent chemosensing ensemble, consisting of a macrocyclic host (cucurbit[8]uril CB[8]), and a pyrene-tagged amphiphilic peptide beacon (AP 1), is reported. AP 1 unfolds upon encapsulation of the pyrene termini into the hydrophobic CB[8] cavity. This changes pyrene excimer to monomer emission. Substrates with higher affinity for the CB[8] cavity can displace AP 1 from the ensemble. The released AP 1 folds again to form a pyrene excimer, which allows for the ratiometric fluorescence monitoring of the substrate. In this report, the ensemble capacity for ratiometric fluorescence monitoring of biological substrates, such as amino acid derivatives, specific peptides, and proteins, in aqueous media is demonstrated.  相似文献   

20.
Ni XL  Wang S  Zeng X  Tao Z  Yamato T 《Organic letters》2011,13(4):552-555
A new type of fluorescent chemosensor based on homooxacalix[3]arene was synthesized. The fluorescent sensor was highly selective for Pb(2+) in comparison with other metal ions tested by enhancement of the monomer emission of pyrene. The C(3) symmetric structure of homooxacalix[3]arene has potential application in the development of a new ratiometric fluorescent chemosensor for heavy metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号