首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Target-based virtual screening is increasingly used to generate leads for targets for which high quality three-dimensional (3D) structures are available. To allow large molecular databases to be screened rapidly, a tiered scoring scheme is often employed whereby a simple scoring function is used as a fast filter of the entire database and a more rigorous and time-consuming scoring function is used to rescore the top hits to produce the final list of ranked compounds. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches are currently thought to be quite effective at incorporating implicit solvation into the estimation of ligand binding free energies. In this paper, the ability of a high-throughput MM-PBSA rescoring function to discriminate between correct and incorrect docking poses is investigated in detail. Various initial scoring functions are used to generate docked poses for a subset of the CCDC/Astex test set and to dock one set of actives/inactives from the DUD data set. The effectiveness of each of these initial scoring functions is discussed. Overall, the ability of the MM-PBSA rescoring function to (i) regenerate the set of X-ray complexes when docking the bound conformation of the ligand, (ii) regenerate the X-ray complexes when docking conformationally expanded databases for each ligand which include "conformation decoys" of the ligand, and (iii) enrich known actives in a virtual screen for the mineralocorticoid receptor in the presence of "ligand decoys" is assessed. While a pharmacophore-based molecular docking approach, PhDock, is used to carry out the docking, the results are expected to be general to use with any docking method.  相似文献   

2.
The ability to accurately predict biological affinity on the basis of in silico docking to a protein target remains a challenging goal in the CADD arena. Typically, "standard" scoring functions have been employed that use the calculated docking result and a set of empirical parameters to calculate a predicted binding affinity. To improve on this, we are exploring novel strategies for rapidly developing and tuning "customized" scoring functions tailored to a specific need. In the present work, three such customized scoring functions were developed using a set of 129 high-resolution protein-ligand crystal structures with measured Ki values. The functions were parametrized using N-PLS (N-way partial least squares), a multivariate technique well-known in the 3D quantitative structure-activity relationship field. A modest correlation between observed and calculated pKi values using a standard scoring function (r2 = 0.5) could be improved to 0.8 when a customized scoring function was applied. To mimic a more realistic scenario, a second scoring function was developed, not based on crystal structures but exclusively on several binding poses generated with the Flo+ docking program. Finally, a validation study was conducted by generating a third scoring function with 99 randomly selected complexes from the 129 as a training set and predicting pKi values for a test set that comprised the remaining 30 complexes. Training and test set r2 values were 0.77 and 0.78, respectively. These results indicate that, even without direct structural information, predictive customized scoring functions can be developed using N-PLS, and this approach holds significant potential as a general procedure for predicting binding affinity on the basis of in silico docking.  相似文献   

3.
To improve the performance of a single scoring function used in a protein-ligand docking program, we developed a bootstrap-based consensus scoring (BBCS) method, which is based on ensemble learning. BBCS combines multiple scorings, each of which has the same function form but different energy-parameter sets. These multiple energy-parameter sets are generated in two steps: (1) generation of training sets by a bootstrap method and (2) optimization of energy-parameter set by a Z-score approach, which is based on energy landscape theory as used in protein folding, against each training set. In this study, we applied BBCS to the FlexX scoring function. Using given 50 complexes, we generated 100 training sets and obtained 100 optimized energy-parameter sets. These parameter sets were tested against 48 complexes different from the training sets. BBCS was shown to be an improvement over single scoring when using a parameter set optimized by the same Z-score approach. Comparing BBCS with the original FlexX scoring function, we found that (1) the success rate of recognizing the crystal structure at the top relative to decoys increased from 33.3% to 52.1% and that (2) the rank of the crystal structure improved for 54.2% of the complexes and worsened for none. We also found that BBCS performed better than conventional consensus scoring (CS).  相似文献   

4.
The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand efficiencies is most relevant to real-world drug design efforts.  相似文献   

5.
6.
Docking and scoring are critical issues in virtual drug screening methods. Fast and reliable methods are required for the prediction of binding affinity especially when applied to a large library of compounds. The implementation of receptor flexibility and refinement of scoring functions for this purpose are extremely challenging in terms of computational speed. Here we propose a knowledge-based multiple-conformation docking method that efficiently accommodates receptor flexibility thus permitting reliable virtual screening of large compound libraries. Starting with a small number of active compounds, a preliminary docking operation is conducted on a large ensemble of receptor conformations to select the minimal subset of receptor conformations that provides a strong correlation between the experimental binding affinity (e.g., Ki, IC50) and the docking score. Only this subset is used for subsequent multiple-conformation docking of the entire data set of library (test) compounds. In conjunction with the multiple-conformation docking procedure, a two-step scoring scheme is employed by which the optimal scoring geometries obtained from the multiple-conformation docking are re-scored by a molecular mechanics energy function including desolvation terms. To demonstrate the feasibility of this approach, we applied this integrated approach to the estrogen receptor alpha (ERalpha) system for which published binding affinity data were available for a series of structurally diverse chemicals. The statistical correlation between docking scores and experimental values was significantly improved from those of single-conformation dockings. This approach led to substantial enrichment of the virtual screening conducted on mixtures of active and inactive ERalpha compounds.  相似文献   

7.
Due to the large number of different docking programs and scoring functions available, researchers are faced with the problem of selecting the most suitable one when starting a structure-based drug discovery project. To guide the decision process, several studies comparing different docking and scoring approaches have been published. In the context of comparing scoring function performance, it is common practice to use a predefined, computer-generated set of ligand poses (decoys) and to reevaluate their score using the set of scoring functions to be compared. But are predefined decoy sets able to unambiguously evaluate and rank different scoring functions with respect to pose prediction performance? This question arose when the pose prediction performance of our piecewise linear potential derived scoring functions (Korb et al. in J Chem Inf Model 49:84–96, 2009) was assessed on a standard decoy set (Cheng et al. in J Chem Inf Model 49:1079–1093, 2009). While they showed excellent pose identification performance when they were used for rescoring of the predefined decoy conformations, a pronounced degradation in performance could be observed when they were directly applied in docking calculations using the same test set. This implies that on a discrete set of ligand poses only the rescoring performance can be evaluated. For comparing the pose prediction performance in a more rigorous manner, the search space of each scoring function has to be sampled extensively as done in the docking calculations performed here. We were able to identify relative strengths and weaknesses of three scoring functions (ChemPLP, GoldScore, and Astex Statistical Potential) by analyzing the performance for subsets of the complexes grouped by different properties of the active site. However, reasons for the overall poor performance of all three functions on this test set compared to other test sets of similar size could not be identified.  相似文献   

8.
Protein–ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein–ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein–ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.  相似文献   

9.
Recently, a knowledge‐based scoring function has been introduced that estimates the protein‐binding affinity based on the 3D structure of a protein–ligand complex (J Med Chem 1999, 42, 791). A ligand volume correction factor has been proposed and applied to filter out intraligand interactions in this simplified potential approach. Here we evaluate the effect of the ligand volume correction on the predictive power of the PMF scoring function. It is found that the effect of the ligand volume correction is significant on the derived potentials and large on the overall score. However, the effect of the ligand correction on the predictive power of the scoring function appears to be smaller. For a test set containing serine proteases the predictive power of the PMF scoring function does not change with the introduction of the volume correction. For a test set of metalloprotease complexes, the predictive power of the PMF scoring function improves only slightly when the volume correction is applied. For five test sets comprising a total of 225 diverse protein ligand complexes taken from the Brookhaven Protein Data Bank it is found, however, that the introduction of the ligand volume correction consistently improves the correlation between the PMF scores and the measured binding affinities. The effect of the correction factor on docking/scoring experiments is also analyzed using a test set of 61 biphenyl inhibitor‐stromelysin complexes. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 418–425, 2001  相似文献   

10.
We present a docking method that uses a scoring function for protein-ligand docking that is designed to maximize the docking success rate for low-resolution protein structures. We find that the resulting scoring function parameters are very different depending on whether they were optimized for high- or low-resolution protein structures. We show that this docking method can be successfully applied to predict the ligand-binding site of low-resolution structures. For a set of 25 protein-ligand complexes, in 76% of the cases, more than 50% of ligand-contacting residues are correctly predicted (using receptor crystal structures where the binding site is unspecified). Using decoys of the receptor structures having a 4 A RMSD from the native structure, for the same set of complexes, in 72% of the cases, we obtain at least one correctly predicted ligand-contacting residue. Furthermore, using an 81-protein-ligand set described by Jain, in 76 (93.8%) cases, the algorithm correctly predicts more than 50% of the ligand-contacting residues when native protein structures are used. Using 3 A RMSD from native decoys, in all but two cases (97.5%), the algorithm predicts at least one ligand-binding residue correctly. Finally, compared to the previously published Dolores method, for 298 protein-ligand pairs, the number of cases in which at least half of the specific contacts are correctly predicted is more than four times greater.  相似文献   

11.
Five homology models for honeybee (Apis mellifera) nicotinic acetylcholine receptor (nAChR) alpha1/beta1, alpha3/beta2, alpha4/beta2, alpha6/beta2 and alpha9/alpha9 subtypes were built from the Torpedo marmorata nAChR X-ray structure. Then, imidacloprid, fipronil and their metabolites were docked into the ligand binding domain (LBD) of these receptors and the corresponding scoring functions were calculated. The binding modes of the docked compounds were carefully analysed. Finally, multivariate analyses were used for deriving structure-activity relationships based on hydrogen bond number and scoring functions between the insecticides and the nAChR models.  相似文献   

12.
The p110alpha isoform of the class IA PI3Ks was recently genetically validated as a promising target for anticancer therapy. However, up to now, only one compound (PIK75 = 1) has been reported as a very potent and selective inhibitor of this isoform. The lack of a 3D structure for this enzyme has clearly hindered the discovery of new p110alpha selective compounds. In view of this, we combined target-based (homology modeling) and ligand-based (3D-QSAR) approaches in an attempt to define an integrated interaction model for p110alpha inhibition. Twenty-five analogues of 1 were docked within the putative p110alpha binding site, and the molecular alignment generated was subsequently used to derive QSAR models based on scoring function, free energy of binding, CoMFA. and CoMSIA. The predictive power of these models was then analyzed using a challenging test set of 5 compounds. CoMSIA, and particularly CoMFA, models were found to outperform the other methods, predicting accurately the potency of 100% of the compounds in the test set, thereby validating our p110alpha homology model for use in further drug development.  相似文献   

13.
Abstract

Interferon regulatory factor-7 (IRF-7) is involved in pulmonary infection and pneumonia. Here, a synthetic strategy that combined quantitative structure–activity relationship (QSAR)-based virtual screening and in vitro binding assay was described to identify new and potent mediator ligands of IRF-7 from natural products. In the procedure, a QSAR scoring function was developed and validated using Gaussian process (GP) regression and a structure-based set of protein–ligand affinity data. By integrating hotspot pocket prediction, pharmacokinetics profile analysis and molecular docking calculations, the scoring function was successfully applied to virtual screening against a large library of structurally diverse, drug-like natural products. With the method we were able to identify a number of potential hits, from which several compounds were found to have moderate or high affinity to IRF-7 using fluorescence binding assays, with dissociation constants Kd at micromolar level. We have also examined the structural basis and noncovalent interactions of computationally modelled IRF-7 complex with its potent ligands. It is revealed that hydrophobic forces and van der Waals contacts play a central role in stabilization of the complex architecture, while few hydrogen bonds confer additional specificity for the protein–ligand recognition.  相似文献   

14.
Most standard molecular docking algorithms take into account only ligand flexibility, while numerous studies demonstrate that receptor flexibility may be also important. While some efficient methods have been proposed to take into account local flexibility of protein side chains, the influence of large-scale domain motions on the docking results still represents a challenge for computational methods. In this work we compared the results of ATP docking to different models of Ca-ATPase: crystallographic apo- and holo-forms of the enzyme as well as "flexible" target models generated via molecular dynamics (MD) simulations in water. MD simulations were performed for two different apo-forms and one holo-form of Ca2+-ATPase and reveal large-scale domain motions of type "closure", which is consistent with experimental structures. Docking to a set of MD-conformers yielded correct solutions with ATP bound in both domains regardless of the starting Ca2+-ATPase structure. Also, special attention was paid to proper ranking of docking solutions and some particular features of different scoring functions and their applicability for the model of "flexible" receptor. Particularly, the results of docking ATP were ranked by a scoring criterion specially designed to estimate ATP-protein interactions. This criterion includes stacking and hydrophobic interactions characteristic of ATP-protein complexes. The performance of this ligand-specific scoring function was considerably better than that of a standard scoring function used in the docking algorithm.  相似文献   

15.
SKATE is a docking prototype that decouples systematic sampling from scoring. This novel approach removes any interdependence between sampling and scoring functions to achieve better sampling and, thus, improves docking accuracy. SKATE systematically samples a ligand's conformational, rotational and translational degrees of freedom, as constrained by a receptor pocket, to find sterically allowed poses. Efficient systematic sampling is achieved by pruning the combinatorial tree using aggregate assembly, discriminant analysis, adaptive sampling, radial sampling, and clustering. Because systematic sampling is decoupled from scoring, the poses generated by SKATE can be ranked by any published, or in‐house, scoring function. To test the performance of SKATE, ligands from the Asetex/CDCC set, the Surflex set, and the Vertex set, a total of 266 complexes, were redocked to their respective receptors. The results show that SKATE was able to sample poses within 2 Å RMSD of the native structure for 98, 95, and 98% of the cases in the Astex/CDCC, Surflex, and Vertex sets, respectively. Cross‐docking accuracy of SKATE was also assessed by docking 10 ligands to thymidine kinase and 73 ligands to cyclin‐dependent kinase. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

16.
Protein-ligand docking programs have been used to efficiently discover novel ligands for target proteins from large-scale compound databases. However, better scoring methods are needed. Generally, scoring functions are optimized by means of various techniques that affect their fitness for reproducing X-ray structures and protein-ligand binding affinities. However, these scoring functions do not always work well for all target proteins. A scoring function should be optimized for a target protein to enhance enrichment for structure-based virtual screening. To address this problem, we propose the supervised scoring model (SSM), which takes into account the protein-ligand binding process using docked ligand conformations with supervised learning for optimizing scoring functions against a target protein. SSM employs a rough linear correlation between binding free energy and the root mean square deviation of a native ligand for predicting binding energy. We applied SSM to the FlexX scoring function, that is, F-Score, with five different target proteins: thymidine kinase (TK), estrogen receptor (ER), acetylcholine esterase (AChE), phosphodiesterase 5 (PDE5), and peroxisome proliferator-activated receptor gamma (PPARgamma). For these five proteins, SSM always enhanced enrichment better than F-Score, exhibiting superior performance that was particularly remarkable for TK, AChE, and PPARgamma. We also demonstrated that SSM is especially good at enhancing enrichments of the top ranks of screened compounds, which is useful in practical drug screening.  相似文献   

17.
It has been reported recently that consensus scoring, which combines multiple scoring functions in binding affinity estimation, leads to higher hit-rates in virtual library screening studies. This method seems quite independent to the target receptor, the docking program, or even the scoring functions under investigation. Here we present an idealized computer experiment to explore how consensus scoring works. A hypothetical set of 5000 compounds is used to represent a chemical library under screening. The binding affinities of all its member compounds are assigned by mimicking a real situation. Based on the assumption that the error of a scoring function is a random number in a normal distribution, the predicted binding affinities were generated by adding such a random number to the "observed" binding affinities. The relationship between the hit-rates and the number of scoring functions employed in scoring was then investigated. The performance of several typical ranking strategies for a consensus scoring procedure was also explored. Our results demonstrate that consensus scoring outperforms any single scoring for a simple statistical reason: the mean value of repeated samplings tends to be closer to the true value. Our results also suggest that a moderate number of scoring functions, three or four, are sufficient for the purpose of consensus scoring. As for the ranking strategy, both the rank-by-number and the rank-by-rank strategy work more effectively than the rank-by-vote strategy.  相似文献   

18.
Since the evaluation of ligand conformations is a crucial aspect of structure-based virtual screening, scoring functions play significant roles in it. However, it is known that a scoring function does not always work well for all target proteins. When one cannot know which scoring function works best against a target protein a priori, there is no standard scoring method to know it even if 3D structure of a target protein-ligand complex is available. Therefore, development of the method to achieve high enrichments from given scoring functions and 3D structure of protein-ligand complex is a crucial and challenging task. To address this problem, we applied SCS (supervised consensus scoring), which employs a rough linear correlation between the binding free energy and the root-mean-square deviation (rmsd) of a native ligand conformations and incorporates protein-ligand binding process with docked ligand conformations using supervised learning, to virtual screening. We evaluated both the docking poses and enrichments of SCS and five scoring functions (F-Score, G-Score, D-Score, ChemScore, and PMF) for three different target proteins: thymidine kinase (TK), thrombin (thrombin), and peroxisome proliferator-activated receptor gamma (PPARgamma). Our enrichment studies show that SCS is competitive or superior to a best single scoring function at the top ranks of screened database. We found that the enrichments of SCS could be limited by a best scoring function, because SCS is obtained on the basis of the five individual scoring functions. Therefore, it is concluded that SCS works very successfully from our results. Moreover, from docking pose analysis, we revealed the connection between enrichment and average centroid distance of top-scored docking poses. Since SCS requires only one 3D structure of protein-ligand complex, SCS will be useful for identifying new ligands.  相似文献   

19.
Comparative study of several algorithms for flexible ligand docking   总被引:3,自引:0,他引:3  
We have performed a comparative assessment of several programs for flexible molecular docking: DOCK 4.0, FlexX 1.8, AutoDock 3.0, GOLD 1.2 and ICM 2.8. This was accomplished using two different studies: docking experiments on a data set of 37 protein-ligand complexes and screening a library containing 10,037 entries against 11 different proteins. The docking accuracy of the methods was judged based on the corresponding rank-one solutions. We have found that the fraction of molecules docked with acceptable accuracy is 0.47, 0.31, 0.35, 0.52 and 0.93 for, respectively, AutoDock, DOCK, FlexX, GOLD and ICM. Thus ICM provided the highest accuracy in ligand docking against these receptors. The results from the other programs are found to be less accurate and of approximately the same quality. A speed comparison demonstrated that FlexX was the fastest and AutoDock was the slowest among the tested docking programs. The database screening was performed using DOCK, FlexX and ICM. ICM was able to identify the original ligands within the top 1% of the total library in 17 cases. The corresponding number for DOCK and FlexX was 7 and 8, respectively. We have estimated that in virtual database screening, 50% of the potentially active compounds will be found among approximately 1.5% of the top scoring solutions found with ICM and among approximately 9% of the top scoring solutions produced by DOCK and FlexX.  相似文献   

20.
We present a novel optimization approach to train a free-shape distance-dependent protein-ligand scoring function called Convex-PL. We do not impose any functional form of the scoring function. Instead, we decompose it into a polynomial basis and deduce the expansion coefficients from the structural knowledge base using a convex formulation of the optimization problem. Also, for the training set we do not generate false poses with molecular docking packages, but use constant RMSD rigid-body deformations of the ligands inside the binding pockets. This allows the obtained scoring function to be generally applicable to scoring of structural ensembles generated with different docking methods. We assess the Convex-PL scoring function using data from D3R Grand Challenge 2 submissions and the docking test of the CASF 2013 study. We demonstrate that our results outperform the other 20 methods previously assessed in CASF 2013. The method is available at http://team.inria.fr/nano-d/software/Convex-PL/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号