首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human glucose 6-phosphate dehydrogenase associated with NADPH was efficiently bound with agarose-bound NADP, whereas the enzyme associated with NADP was poorly bound with agarose-bound NADP. After the elimination of haemoglobin from haemolyzate by treatment with DEAE-cellulose, the enzyme was converted into the NADPH-bound form and was applied on an affinity column. The enzyme was specifically eluted from the column by NADP in the elution buffer. A homogeneous enzyme preparation was obtained in high yield.  相似文献   

2.
The sensitivity of the enzyme glucose 6-phosphate dehydrogenase to ionizing radiation was examined under several conditions, including the presence of several free-radical scavengers. The enzyme was also irradiated when covalently bound to polyacrylamide beads whose structure is very similar to the polypeptide backbone of proteins. All the enzyme forms were irradiated in the frozen state with high-energy electrons from a linear accelerator. Surviving enzyme activity and surviving monomers were determined; the data were analyzed by target theory.Free-radical scavengers reduced the radiation target size of both the activity and monomers of the free enzyme, but not that of the immobilized enzyme activity. The target size of the activity of the free enzyme was that of a dimer mass, but in the case of the immobilized enzyme it was equal to the smaller mass of the monomer.Free-radical scavengers reduce the target size by modifying radiation energy transfer. The target size of the polyacrylamide-bound enzyme activity was expected to be very large since the connection between polyacrylamide and protein is a peptide bond which permits transfer of radiation-deposited energy. Several explanations concerning energy transfer are suggested for this result.  相似文献   

3.
Hexokinase (HK) and glucose 6-phosphate dehydrogenase (G6PDH) are important enzymes used in biochemical studies and in analytical methods. The stability of the enzymes can be affected by several variables, pH being one of them. The effect of pH on the stability of HK and G6PDH was evaluated in this work. Baker’s yeast cells were suspended in 50 mM Tris-HCl buffer (pH 7.5) containing 5.0 mM MgCl2, and submitted to disruption by agitation with glass beads and in the presence of protease inhibitors. The cell-free extract was obtained by centrifugation (2880g; 10 min), followed by dilution into the buffers: 0.1 M acetate-acetic acid (pH: 4.0, 4.5, 5.0, or 5.5), 0.1 M phosphate buffer (pH: 6.0, 6.5, or 7.0), and 0.1 M Tris-HCl buffer (pH: 7.5, 8.0, 8.5, 9.0 or 9.5). The residual activity of HK and G6PDH, expressed as μmol of NADPH formed per min, were measured through a period of buffer-enzyme contact from 0 to 51 h at 4°C. It was observed that up to 4 h both enzymes were stable in all buffers used. However, after 51 h HK was stable at pH 6.0 and 7.5, whereas G6PDH was stable at pH 7.0, 9.5, and between 4.5 and 5.5.  相似文献   

4.
We describe a blue native polyacrylamide gel electrophoretic technique that allows the facile detection, quantitation and purification of three NADPH-producing enzymes. Glucose 6-phosphate dehydrogenase, malic enzyme and NADP-dependent isocitrate dehydrogenase were detected simultaneously. Activity staining based on the formation of NADPH from the respective substrates and the subsequent precipitation of formazan enabled the relative quantitation of enzymatic activities, while Coomassie staining on one-dimensional or two-dimensional gels helped monitor the amount of protein associated with these enzymatic activities. This technique provides a simple and effective route to obtain homogeneous protein for further analyses and also enables the screening of these NADPH-producing enzymes in various cellular systems.  相似文献   

5.
Reported is a systematic study of the "fitness" (in terms of kcat/Km) of a series of phosphonate mimics of glucose 6-phosphate (G6P) as unnatural substrates for G6P dehydrogenase from Leuconostoc mesenteroides. The four G6P analogues (9, 10, 15a, and 15b) differ only in the degree of fluorination at the "bridging" phosphonate carbon. All have been synthesized from benzyl 6-O-trifluoromethanesulfonyl-2,3,4-tri-O-benzyl beta-D-glucopyranoside (6). The phosphonates with bridging CH2 (9) and CF2 (10) groups are cleanly obtained by direct displacements with the appropriate LiX2CP(O)(OEt)2 reagents (X = H, F) in 15 min at -78 degrees C. For the (alpha-monofluoro)alkylphosphonates (15a/b), homologation of 6 is achieved via lithiodithiane-mediated triflate displacement, followed by aldehyde unmasking [CaCO3, Hg(ClO4)2, H2O]. Addition of diethyl phosphite anion produces diastereomeric, (alpha-hydroxy)phosphonates 13a/b (1.4:1 ratio) which may be readily separated by chromatography. The stereochemistry of the minor diastereomer was established as 7(S) via X-ray crystallographic structure determination of its p-bromobenzoate derivative, 16b. Treatment of the major 7(R) diastereomer with DAST produces alpha-fluorinated phosphonate 14a, in modest yield, with inversion of configuration, as established, again, by X-ray crystallography. To our knowledge, this is first example of DAST-mediated fluorination of a (nonbenzylic, nonpropargylic) secondary (alpha-hydroxy)phosphonate and thus establishes the stereochemical course of this transformation. alpha-Deprotonation/kinetic quenching of 14a provides access to the 7(R)-epimer (14b). For all four protected phosphonates (7, 8, 14a, and 14b), diethyl phosphonate ester deprotection was carried out with TMSBr, followed by global hydrogenolytic debenzylation to produce the free phosphonates, as alpha/beta anomeric mixtures. Titrations of G6P itself and the free phosphonic acids provides second pKa values of 6.5 (1, bridging-O), 5.4 (10, bridging-CF2), 6.2 (14a, bridging-CHF), and 7.6 (9, bridging-CH2). Leuconostoc mesenteroides G6PDH-mediated oxidation and Lineweaver-Burk analysis yields normalized kcat/Km values of 0.043 (14b, bridging-7(R)-CHF), 0.11 (10, bridging-CF2), 0.23 (14b, bridging-CH2), and 0.46 (14a, bridging-7(S)-CHF) relative to G6P itself, largely reflecting differences in Km. The fact that kcat/Km increases by more than an order of magnitude in going from the 7(R)-alpha-monofluoroalkyl phosphonate (worst substrate) to the 7(S)-diastereomer (best substrate) is especially notable and is discussed in the context of the known phosphate binding pocket of this enzyme as revealed by X-ray crystallography (Adams, M. J. et al. Structure 1994, 2, 1073-1087).  相似文献   

6.
Glucose 6-phosphate dehydrogenase shows a high partition coefficient in poly-(ethylene glycol)-dextran aqueous two-phase systems in comparison with those for 6-phosphogluconate dehydrogenase, phosphofructokinase and the bulk of proteins present in rat erythrocyte haemolysates. As a consequence, fractions highly enriched in glucose 6-phosphate dehydrogenase can be obtained after multiple partitions in the above systems with a counter-current distribution procedure. Phosphofructokinase shows a high affinity for Cibacron Blue and, as a result, the enzyme can be extracted in the top phase of poly(ethylene glycol)-dextran systems containing Cibacron Blue-poly(ethylene glycol) (affinity systems). The efficiency for the purification of the enzymes by partitioning is increased up to 10-fold when enzyme-rich fractions, obtained by precipitation with poly(ethylene glycol), are used instead of original haemolysate. The recovery of enzyme activities is near 100% in both instances.  相似文献   

7.
Applied Biochemistry and Biotechnology - In a 5-L fermentor (NBS-MF 105), Saccharomyces cerevisiae (0.7 g/L) was inoculated into a liquid medium (pH 4.0) containing 17 g/L of glucose, 2.55 g/L of...  相似文献   

8.
9.
Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme that protects human red blood cells from premature destruction caused by oxidative damage. People suffering from G6PD deficiency would be vulnerable to various oxidative substances, such as fava beans and oxidant drugs. Until now, many institutes, organizations or domain experts have compiled low-risk or high-risk drugs collection for patients with G6PD deficiency, mainly from the case report or clinical trails. Recently, we have explored a classification system to predict drug-induced hemolytic potential. In this paper, we screen the normally used over-the-counter (OTC) drugs for "high-risk" and "low-risk" ones to G6PD deficient patients by this system.  相似文献   

10.
A comparative study of the photosensitizing activity of advanced glycation endproducts (AGEs) prepared by incubating glucose (Glc), threose (Threo) and ascorbate (AH-) in the presence of lysine (Lys) was performed. Photochemical activity was evaluated under low oxygen pressure with the aim to simulate the conditions of the eye lens. AGE-sensitized tryptophan and AH- photodecomposition and glucose 6-phosphate dehydrogenase inactivation were studied. In all systems, glucose-derived AGEs showed the highest photosensitizing efficiency, followed by ascorbate and threose. The presence of different sensitizers in glycation products mixtures was investigated. For this purpose, Trp decomposition quantum yields were determined at 344 and 367 nm. The values obtained at 344 nm are between three and six times higher than those observed at 367 nm, confirming the presence of at least two compounds with different photosensitizing activities in the mixtures. The chemiluminescence associated with the AGE-mediated oxidation of free Trp and Trp residues in human serum albumin was also studied, and a good correlation between the emission of light and the extent of Trp decomposition was found. In conclusion, it is demonstrated that glucose derived AGEs, which can be formed in vivo in the eye lens of diabetic patients and are accumulated in elderly lenses, have a higher photosensitizing efficiency, at low oxygen pressure, than those arising from ascorbate and threose. This high efficiency is especially significant when proteins are employed as photochemical targets, indicating that protein-sensitizer interaction and the local environment around the sensitizers play an important role.  相似文献   

11.
Kinetic study of the mechanism of the temperature-induced loss of the catalytic activity by yeast hexokinase (HK) and yeast glucose-6phosphate dehydrogenase (G-6-PDG) has shown the dissociative nature of the processes. In the temperature range 40–47°C, they are satisfactorily described in terms of consecutive reactions in which steps of irreversible denaturation of the monomeric units follow the reversible dissociation of inactive oligomeric forms into the active units, resulting in an increase in catalytic activity. The experimental data have been analyzed in the framework of the dissociative mechanism, and a semiquantitative method has been developed for calculating the individual rate constants.  相似文献   

12.
Urocanic acid, UCA, is characterized by two electronic transitions in the UV-B (280-320 nm) which comprise its broad absorption spectrum and give rise to wavelength-dependent isomerization quantum yields. The absorption spectrum of UCA extends into the UV-A (320-400 nm). Given the UV-A component of sunlight is significantly greater than the UV-B component it is hypothesized even weak UV-A photochemistry of UCA could be important for in vivo responses to UV radiation. Degenerate pump-probe experiments performed on t-UCA at several wavelengths in the UV-A reveal an excited-state absorption that undergoes a rapid, approximately 1 ps decay. Photoacoustic experiments performed on both the cis and trans isomers reveal the formation of a long-lived intermediate following UV-A excitation. The efficiency and action spectra for this latter photoactive process are presented and are similar for both isomers of UCA. Cholesterol hydroperoxide assays designed to investigate the nature of the UV-A photoreactivity of t-UCA confirm the production of reactive oxygen species. The bimolecular rate constant for the quenching of singlet oxygen by t-UCA is determined to be 3.5 x 10(6) M(-1) s(-1). Taking into consideration recent theoretical calculations and jet expansion studies of the electronic structure of gas-phase t-UCA, a model is proposed to explain the isomerization and photoreactivity of t-UCA in solution over the UV-A region.  相似文献   

13.
14.
Glucose-6-phosphate dehydrogenase (G6PD) (EC 1.1.1.49) is an abun dant enzyme in Saccharomyces cerevisiae. This enzyme is of great interest as an analytical reagent because it is used in a large number of quantitative assays. A strain of S. cerevisiae was genetically modified to improve G6PD production during aerobic culture. The modifications are based on cloning the G6PD sequence under the control of promoters that are upregulated by the carbon source used for yeast growth. The results showed that S. cerevisiae acquired from a commercial source and the same strain produced by aerobic cultivation under controlled conditions provided very similar G6PD. However, G6PD production by genetically modified S. cerevisiae produced very high enzyme activity and showed to be the most effective procedure to obtain glucose-6-phosphate dehydrogenase. As a consequence, the cost of producing G6PD can be significantly reduced by using strains that contain levels of G6PD up to 14-fold higher than the level of G6PD found in commercially available strains.  相似文献   

15.
Tridentate Schiff base (H(2)L) ligand was synthesized via condensation of o-hydroxybenzaldehyde and 2-aminothiophenol. The metal complexes were prepared from reaction of the ligand with corresponding metal salts presence of substituted pyridine in two different solvents (MeOH or MeCN). The ligand and metal complexes were then characterized by using FTIR, TGA, (1)H NMR and (13)C NMR spectroscopies. The FTIR spectra showed that H(2)L was coordinated to the metal ions in tridentate manner with ONS donor sites of the azomethine N, deprotonated phenolic-OH and phenolic-SH. Furthermore, substituted pyridine was coordinated to the central metal atoms. The thermal behavior of the complexes was investigated by using TGA method and dissociations indicated that substituted pyridine and ligand were leaved from coordination. This coordination of the metal complexes was correlated by (1)H NMR and (13)C NMR. Finally, electrochemical behavior of the ligand and a Ni(II) complex were investigated.  相似文献   

16.
Singlet oxygen-initiated decomposition of urocanic acid (UCA) (3-(1H-imidazol-4(5)-yl)-2-propenoic acid) was used to successfully confirm the report that UCA generates singlet oxygen when irradiated with ultraviolet A light (UVA). The UCA-generated singlet oxygen converts UCA to one or more products that then catalyze the further destruction of the UCA with UVA light by singlet oxygen formation. Some nicking of the phiX-174 supercoiled plasmid DNA was observed when UCA was irradiated with UVA to complete destruction of the starting material, and the product mixture was then mixed with the plasmid in the dark. More extensive nicking was seen when the photoproduct mixture and the plasmid were irradiated with UVA light. An "aged" (4 days) solution of UCA photoproduct no longer caused nicking in the dark but retained the capability to nick the plasmid when irradiated. There is evidence for the presence of hydroperoxides in the UCA photolysis product mixture, and the quenching studies with 2-propanol indicate that free radicals are involved in the plasmid-nicking photochemistry. Singlet oxygen does not appear to play a role in the nicking of the plasmid.  相似文献   

17.
A flow-injection-fluorimetric method for the determination of arsanilic acid is proposed. The assay is based on the on-line decomposition of arsanilic acid in the presence of peroxydisulfate on irradiation with UV light. The arsenate generated in the photochemical reaction was reacted with molybdate in dilute nitric acid to form arsenomolybdic acid, which oxidised thiamine to thiochrome. The thiochrome was monitored fluorimetrically at 440 nm with excitation at 375 nm. The calibration graph was linear in the range 0.10-10.8 microg mL(-1) with a correlation coefficient of 0.999. The detection limit was 0.01 microg mL(-1) and the sample throughput was 55 samples h(-1). The applicability of the method was demonstrated by determining arsanilic acid in animal foodstuffs and water.  相似文献   

18.
Exposure to ultraviolet (UV) radiation may induce erythema, DNA damage and suppression of immune responses. Melanin pigmentation offers protection against the first two of these effects, but immunosuppression seems to occur irrespective of the subject's pigmentation. Cis-urocanic acid (cis-UCA), produced by isomerization of trans-UCA in the stratum corneum on UV exposure, initiates some of the immunomodulatory effects of UV radiation. In the present study the relationship between skin pigmentation and UCA isomerization has been examined in 28 healthy individuals of skin types I-IV. Pigmentation is measured in five areas of not recently exposed back skin before irradiation with 0, 0.45, 0.9, 1.8 and 3.6 standard erythema dose (SED) of filtered broadband UV-B (1 SED = 10 mJ cm-2 at 298 nm). The concentration of UCA isomers is measured immediately after the irradiation. With 3.6 SED, the relative production of cis-UCA is close to the maximum obtainable, irrespective of skin type. A significant negative correlation is found between pigmentation and relative production of cis-UCA at 0.45 and 1.8 SED, and between pigmentation and absolute production of cis-UCA at 0.45 SED. At doses of 0.45 and 0.9 SED the relative and absolute production of cis-UCA are higher in the group with skin types I and II when compared with the group with skin types III and IV. The higher isomerization in the lightly pigmented subjects than in the more pigmented ones may indicate that people with fair skin are at a relatively higher risk of immunosuppression when exposed to low doses of UV radiation.  相似文献   

19.
20.
Recycling of NADP+ using immobilized wholeEscherichia coli cells as source of respiratory chain, glucose-6-phosphate, and soluble yeast glucose-6-phosphate dehydrogenase (1.1.1.49) is described. NADP+ was recycled more than 10-fold. We demonstrated NADPH respiration at pH 5.8 inE. coli membrane vesicles. The respiratory chain was involved most probably in NADPH oxidation.
  1. The respiratory activity is localized at the level of the inner bacterial membrane. The active site for NADPH facing the cytoplasm.
  2. NADPH respiration is inhibited by 10 mM cyanide, similar to the conditions of inhibition of NADH respiration.
  3. NADPH dehydrogenase activity seems to be the limiting step of the respiratory chain:K M for NADPH respiration and NADPH dehydrogenase activity are similar. The pH optima for these two activities are also comparable (around pH 5.8). Furthermore, the following properties are rather in favor of a common NADH dehydrogenase and NADPH dehydrogenase activity (1.6.99.2).
o| li](1)|At saturating concentrations of NADH and NADPH, neither respiration nor dehydrogenase activities were additive. li](2)|Similar heat inactivation kinetics were observed for NADH and NADPH dehydrogenase-activity. Protection against heat inactivation was obtained for the two activities with NAD+, NADP+, NADH, and NADPH. All these results suggested the possibility of recycling of NADP+ under similar conditions to those previously described for NAD+ (Burstein et al., 1981). It becomes thus possible to use various NAD+ and NADP+-dependent dehydrogenases in enzyme technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号