首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
Hydrogen-sorption studies have been carried out for the catenation isomer pairs of PCN-6 and PCN-6' (both have the formula of Cu(3)(TATB)(2), where TATB represents 4,4',4'-s-triazine-2,4,6-triyl-tribenzoate with a formula of C(24)H(12)N(3)O(6)). Inelastic neutron scattering (INS) studies reveal that the initial sites occupied by adsorbed H(2) are the open Cu centers of the paddlewheel units with comparable interaction energies in the two isomers. At high H(2) loadings, where the H(2) molecules adsorb mainly on or around the organic linkers, the interaction is found to be substantially stronger in catenated PCN-6 than in noncatenated PCN-6', leading to much higher H(2) uptake in the isomer with catenation. Hydrogen sorption measurements at pressures up to 50 bar demonstrate that framework catenation can be favorable for the enhancement of hydrogen adsorption. For example, the excess hydrogen uptake of PCN-6 is 72 mg/g (6.7 wt %) at 77 K/50 bar or 9.3 mg/g (0.92 wt %) at 298 K/50 bar, respectively, and that for PCN-6' is 42 mg/g (4.0 wt %) at 77 K/50 bar or 4.0 mg/g (0.40 wt %) at 298 K/50 bar. Importantly, PCN-6 exhibits a total hydrogen uptake of 95 mg/g (8.7 wt %) (corresponding to a total volumetric value of 53.0 g/L, estimated based on crystallographic density) at 77 K/50 bar and 15 mg/g (1.5 wt %) at 298 K/50 bar. Significantly, the expected usable capacity of PCN-6 is as high as 75 mg/g (or 41.9 g/L) at 77 K, if a recharging pressure of 1.5 bar is assumed.  相似文献   

2.
Design of covalent organic frameworks for methane storage   总被引:1,自引:0,他引:1  
We designed 14 new covalent organic frameworks (COFs), which are expected to adsorb large amounts of methane (CH(4)) at 298 K and up to 300 bar. We have calculated their delivery uptake using grand canonical Monte Carlo (GCMC) simulations. We also report their thermodynamic stability based on 7.5 ns molecular dynamics simulations. Two new frameworks, COF-103-Eth-trans and COF-102-Ant, are found to exceed the DOE target of 180 v(STP)/v at 35 bar for methane storage. Their performance is comparable to the best previously reported materials: PCN-14 and Ni-MOF-74. Our results indicate that using thin vinyl bridging groups aid performance by minimizing the interaction methane-COF at low pressure. This is a new feature that can be used to enhance loading in addition to the common practice of adding extra fused benzene rings. Most importantly, this report shows that pure nonbonding interactions, van der Waals (vdW) and electrostatic forces in light elements (C, O, B, H, and Si), can rival the enhancement in uptake obtained for microporous materials derived from early transition metals.  相似文献   

3.
The adsorption equilibrium of methane in PCN-14 was simulated by the Monte Carlo technique in the grand canonical ensemble. A new force field was proposed for the methane/PCN-14 system, and the temperature dependence of the molecular siting was investigated. A detailed study of the statistics of the center of mass and potential energy showed a surprising site behavior with no energy barriers between weak and strong sites, allowing open metal sites to guide methane molecules to other neighboring sites. Moreover, this study showed that a model assuming weakly adsorbing open metal clusters in PCN-14, densely populated only at low temperatures (below 150 K), can explain published experimental data. These results also explain previously observed discrepancies between neutron diffraction experiments and Monte Carlo simulations.  相似文献   

4.
针对迄今具有最大甲烷存储量的金属-有机骨架(MOF)材料PCN-14, 采用质心分布图研究了甲烷在其中的吸附机理. 结果表明, PCN-14中主要存在两个吸附位, 并且有机配体对材料吸附甲烷有着重要影响. 因此, 通过改变有机配体的类型, 设计了对甲烷具有更高吸附性能的新型MOF材料PCN-M. PCN-M在3.5 MPa下、290 K时对甲烷的吸附量达到了257 V/V, 比PCN-14增加了12%; 298 K时对甲烷的吸附量达到了241 V/V, 超过了DOE标准180 V/V的34%. 此外, 本工作表明了改变有机配体是改善材料存储甲烷能力的一种可行方法, 为合成高甲烷储存量的新MOF材料提供了理论依据.  相似文献   

5.
The photocatalytic reduction of CO2 has attracted considerable attention owing to the dual suppression of environmental pollution and energy shortage. The technology uses solar energy to convert carbon dioxide into hydrocarbon fuel, which is of great significance for achieving the carbon cycle. The development of low-cost photocatalytic materials is critical to achieving efficient solar energy to fuels conversion. One of the most commonly employed photocatalysts is TiO2. However, it suffers from broad band gap as well as the recombination of photo-excited holes and electron. Hence, in this work, we report the photochemical reduction of CO2 using rod-like PCN-222(Cu)/TiO2 composites as photocatalyst through a simple hydrothermal method, in which TiO2 nanoparticles are anchored at the interface of the SiC rod PCN-222(Cu). Multiple characterization techniques were used to analyze the structure, morphology, and properties of the PCN-222(Cu)/TiO2 composite. A series of characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy, photo-electrochemical, and photoluminescence (PL) confirm the successful preparation of PCN-222(Cu)/TiO2 composites. SEM reveals that the TiO2 nanoparticles are uniformly distributed on the surface of the rod-shaped PCN-222(Cu)/TiO2. XRD results show that PCN-222(Cu) and PCN-222(Cu)/TiO2 composite photocatalysts with good crystal structure were successfully synthesized. According to the DRS results, the prepared PCN-222(Cu)/TiO2 composite samples exhibit characteristic absorption peaks of metalloporphyrins in the visible region. PL spectroscopy, transient photocurrent response, and electrochemical impedance spectroscopy further confirm that the rod-like PCN-222(Cu)/TiO2 samples have high electron-hole pair separation efficiency. By controlling the mass ratio of PCN-222(Cu) and TiO2, the photocatalytic CO2 reduction performance test shows that the 10% PCN-222(Cu)/TiO2 composite achieves optimal catalytic performance, yielding 13.24 μmol·g−1·h−1 CO and 1.73 μmol·g−1·h−1 CH4, respectively. All the rod-like PCN-222(Cu)/TiO2 composites exhibit better photocatalytic CO2 activity than that of TiO2 nanoparticles or PCN-222(Cu) under the illumination of xenon lamps, which is attributed to charge transport and electron-hole separation capabilities. After three test cycles, the catalytic activity of PCN-222(Cu)/TiO2 photocatalyst was virtually unchanged. The reduction yield of the catalyst increased for 8 h under continuous illumination, indicating that PCN-222(Cu)/TiO2 composites have acceptable stability. The estimation of the band gap curve and the Mote-Schottky curve test show that the lowest unoccupied molecular orbital position of PCN-222(Cu) is more negative than the TiO2 of the conduction band; hence, a possible photocatalytic reaction mechanism of the PCN-222(Cu)/TiO2 composite is proposed. This study provides a new strategy for the integration of metal-organic frameworks and oxide semiconductors to construct efficient photocatalytic systems.  相似文献   

6.
《中国化学快报》2021,32(9):2851-2855
More and more attentions have been focused on design and synthesis of novel metal-organic framework/graphene oxide (MOF/GO) composites with unique performance. Zirconium-porphyrin MOF (PCN-222) is in-situ synthesis with the existence of GO with −COOH group to artfully fabricate a PCN-222/GO composite. This composite can be employed as functional material to modify the working electrode. Thanks to excellent electrical conductivity of GO, abundant mesoporous channels and numerous Zr(IV) metal sites of PCN-222, this composite can immobilize a large amount of aptamer through strong π-π stacking interaction and high affinity between phosphate group of aptamer and Zr(IV) site of PCN-222 simultaneously. Hence, an ultra-sensitive electrochemical aptasensor based on PCN-222/GO composite can quantificationally detect trace chloramphenicol with limit of detection of 7.04 pg/mL (21.79 pmol/L) from 0.01 ng/mL to 50 ng/mL by electrochemical impedance spectroscopy even in real samples. Meanwhile, this fabricated aptasensor reveals good repeatability, outstanding selectivity and preferable long-term storage. This research provides a useful approach to construct MOF/GO composites for fabricating electrochemical aptasensors in the electrochemical detection field.  相似文献   

7.
8.
Metal-organic framework (MOF) is an ideal precursor/template for porous carbon, and its active components are uniformly doped, which can be used in energy storage and catalytic conversion fields. Metal-organic framework PCN-224 with carboxylporphyrin as the ligand was synthesized, and then Zn2+ and Co2+ ions were coordinated in the center of the porphyrin ring by post-modification. Here, PCN-224−ZnCo with different ratios of bimetallic Zn2+/Co2+ ions were used as the precursor, and the metal-nitrogen-carbon(M−N−C) material of PCN-224−ZnCo-950 was obtained by pyrolyzing the precursor at 950 °C in Ar. Because Zn is easy to volatilize at 950 °C, the formed M−N−C materials can reflect different Co contents and different basic site concentrations. The formed material still maintains the original basic framework. With the increase of Zn2+/Co2+ ratio in precursor, the concentration of N-containing alkaline sites in pyrolysis products gradually increase. Compared with the precursor, PCN-224−ZnCo1-950 with Zn2+/Co2+=1 : 1 has greatly improved basicity and suitable acidic/ alkaline site concentration. It can be efficiently used to carbon dioxide absorption and catalyze the cycloaddition of CO2 with epoxide. More importantly, the current method of adjusting the acidic/basic sites in M−N−C materials through volatilization of volatile metals can provide an effective strategy for adjusting the catalysis of MOF derivatives with porphyrin structure.  相似文献   

9.
The structural deterioration of archetypical, well-faceted metal–organic frameworks (MOFs) has been evaluated upon exposure to an acidic environment (H2S). Experimental results show that the structural damage highly depends on the nature of the hybrid network (e.g., softness of the metal ions, hydrophilic properties, among others) and the crystallographic orientation of the exposed facets. Microscopy images show that HKUST-1 with well-defined octahedral (111) facets is completely deteriorated, ZIF-8 with preferentially exposed (110) facets exhibits a large external deterioration with the development of holes or cavities in the mesoporous range, whereas UiO-66-NH2 with (111) exposed facets, and PCN-250 with (100) facets does not reflect any sign of surface damage. Despite the selectivity in the external deterioration, X-ray diffraction and gas adsorption measurements confirm that indeed all MOFs suffer an important internal deterioration, these effects being more severe for MOFs based on softer cations (e.g., Cu-based HKUST-1 and Fe-based PCN-250). These structural changes have inevitable important effects in the final adsorption performance for CO2 and CH4 at low and high pressures.  相似文献   

10.
We report the first experimental evidence for rapid formation of hydrogen clathrates under mild pressure and temperature conditions within the cavities of a zirconium-metalloporphyrin framework, specifically PCN-222. PCN-222 has been selected for its 1D mesoporous channels, high water-stability, and proper hydrophilic behavior. Firstly, we optimize a microwave (MW)-assisted method for the synthesis of nanosized PCN-222 particles with precise structure control (exceptional homogeneity in morphology and crystalline phase purity), taking advantage of MW in terms of rapid/homogeneous heating, time and energy savings, as well as potential scalability of the synthetic method. Second, we explore the relevance of the large mesoporous 1D open channels within the PCN-222 to promote the nucleation and growth of confined hydrogen clathrates. Experimental results show that PCN-222 drives the nucleation process at a lower pressure than the bulk system (1.35 kbar vs 2 kbar), with fast kinetics (minutes), using pure water, and with a nearly complete water-to-hydrate conversion. Unfortunately, PCN-222 cannot withstand these high pressures, which lead to a significant alteration of the mesoporous structure while the microporous network remains mainly unchanged.  相似文献   

11.
Immobilization of porphyrin complexes into crystalline metal–organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from −0.6 V to −1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.  相似文献   

12.
The robust metal-organic framework compound {[Zn(2)(L)] x 4H(2)O}(infinity) I has been synthesized by hydrothermal reaction of ZnCl(2) and 4,4'-bipyridine-2,6,2',6'-tetracarboxylic acid (H(4)L). Compound I crystallizes in a chiral space group, P4(2)2(1)2, with the chirality generated by the helical chains of hydrogen-bonded guest water molecules rather than by the coordination framework. Removal of guest water molecules from the crystal affords the porous material, [Zn(2)(L)](infinity) (II), which has very high thermal stability and is chemically inert. The N(2) isotherm of II at 77 K suggests a uniform porous structure with a BET surface area of 312.7 m(2)/g and a remarkably strong interaction with N(2) molecules (betaE(0) = 29.6 kJ mol(-)(1)). II also exhibits significant gas storage capacities of 1.08 wt % for H(2) at 4 bar and 77 K and 3.14 wt % (44.0 cm(3)/g, 67 v/v) for methane at 9 Bar at 298 K. The adsorption behavior of II toward organic solvent vapors has also been studied, and isotherms reveal that for different solvent vapors adsorption is dominated by two types of processes, absorbate-absorbate or absorbate-absorbent interactions. The adsorption and desorption kinetic processes in II are determined mainly by the molecular size of the guest species and their interaction with the host.  相似文献   

13.
A stability study was made of 10 antimicrobials: 6 sulfonamides, 3 nitrofurans, and chloramphenicol residues in raw milk samples preserved with 0.1 % potassium dichromate (K2Cr2O7) and 0.05% mercuric bichloride (HgCl2) during cold storage for 7 days. Preserved milk samples fortified with 50 ppb of each antimicrobial were analyzed by liquid chromatography (modified AOAC Method 993.32). Drugs were extracted with chloroform-acetone after solvent evaporation residues were dissolved with aqueous sodium acetate buffer solution (0.02M, pH 4.8), and fat was removed with hexane. Sulfonamides and chloramphenicol were detected at 275 nm (UV) by using a gradient system of sodium acetate buffer solution-acetonitrile starting at 95 + 5 (v/v) and finishing at 80 + 20 (v/v). Nitrofurans were detected at 375 nm (UV) isocratically with sodium acetate buffer solution-acetonitrile (80 + 20, v/v). Residues stability was measured through recovery data. Sulfamethoxazole, sulfachloropyridazine, nitrofurazone, furazolidone, and furaltadone residues remained stable in the presence of either preservative for 7 days. Sulfamethazine and chloramphenicol were not affected by K2Cr2O7, but had significant losses (p <0.05) when HgCl2 was used: 26.2 and 13.4%, respectively. Average recoveries of sulfamonomethoxine, sulfamerazine, and sulfathiazole significantly decreased by Day 7, with losses of 17.1, 17.2, and 23.2% for K2Cr2O7, and 23.3, 20.7, and 48.0% for HgCl2, respectively. During 5 days of cold storage all antimicrobials tested, except sulfathiazole, remained stable in milk samples preserved with 0.1 % K2Cr2O7 or 0.05% HgCl2.  相似文献   

14.
Fang QR  Yuan DQ  Sculley J  Li JR  Han ZB  Zhou HC 《Inorganic chemistry》2010,49(24):11637-11642
By using Zn(4)O(CO(2))(6) as secondary building units (SBUs) and two extended ligands containing amino functional groups, TATAB and BTATB (TATAB = 4,4',4'-s-triazine-1,3,5-triyltri-p-aminobenzoate and BTATB = 4,4',4'-(benzene-1,3,5-triyltris(azanediyl))tribenzoate), two isostructural mesoporous metal-organic frameworks (MOFs) with cavities up to 2.73 nm, designated as PCN-100 and PCN-101 (PCN represents porous coordination network), have been synthesized. N(2) sorption isotherms of both PCN-100 and -101 showed typical type IV behavior, indicating their mesoporous nature. The TATAB ligand that comprises PCN-100 was employed to capture heavy metal ions (Cd(II) and Hg(II)) by constructing complexes within the pores with a possible coordination mode similar to that found in aminopyridinato complexes. This reveals that mesoporous materials such as PCN-100 can be applied in the elimination of heavy metal ions from waste liquid. In addition, both PCNs-100 and -101 exhibit size-selective catalytic activity toward the Knoevenagel condensation reaction.  相似文献   

15.
We report on a detailed textural analysis of mechanochemically synthesized MOF-199 including N2 adsorption-desorption and CO2 adsorption isotherms data at 77 K and 273 K (up to atmospheric pressure), respectively, and CH4 adsorption data at 298 K (up to 35 bar). We used the isotherm adsorption data to determine the micropore volume of the MOF-199 structures, to establish their methane uptake capacity and to understand how these properties depended on the Ethanol/BTC ratio used during the synthesis. The maximum methane uptake capacity for our specimens was recorded at 130 v/v at 35 bars. These results open an avenue for a better understanding of alternative manufacturing processes of MOF structures for gas storage applications.  相似文献   

16.
The validation and quantitative determination of the protease inhibitor, saquinavir, from confluent Caco-2 monolayers and from aqueous solution is reported. The high performance liquid chromatographic method consisted of an Ultramex 5 C(8) reverse-phase column (250 x 4.6 mm i.d.) and a mobile phase of acetonitrile:water:triethylamine (55:44:1, v/v/v, pH 6.5). Samples were analyzed using an ultraviolet detector at 238 nm, and diltiazem hydrochloride (66 micro g/mL) was used as an internal standard. A linear response over a broad concentration range (0.4-8.0 micro g/mL, r(2) = 0.997) was obtained. The limit of detection and quantitation was set at 0.14 and 0.4 micro g/mL, respectively. Over a 4 day period, the intra-day and inter-day precision ranged from 1 to 7% with a mean of 4%, and from 1 to 2% with a mean of 1.5%, respectively. Bench-top and storage stability of saquinavir was found to be satisfactory. The permeability of saquinavir through Caco-2 monolayers was estimated using this assay.  相似文献   

17.
Potassium(K)ion batteries present their promising application for large-scale energy storage systems with cost-effective characteristic.Unfortunately,the large K ion radius results in sluggish K ion diffusion kinetics and volume expansion of the electrode during the K ion insertion/extraction process.It is a challenge to explore capable anode materials with remarkable K ion storage ability.Herein,we design and prepare SnS2 ultrathin nanosheets via a facile hydrothermal process.When severing as anode materials for K ion batteries with optimized electrolyte,SnS2 presents an improved capacity and rate ability.The capable electrochemical performance is ascribed to the reduced ion diffusion pathway and capacitor-dominated K-ion storage process.In addition,the K ion storage mechanism of SnS2 is investigated by the ex-situ X-ray diffraction technique.  相似文献   

18.
彭祖茂  朱丽  邓梦雅  张协光  郑裕辉 《色谱》2018,36(11):1140-1146
建立超高效液相色谱-串联质谱同时检测植物油中4种生育酚、4种生育三烯酚、4种植物甾醇、β-胡萝卜素和角鲨烯等14种营养成分的方法。样品经皂化处理后,采用石油醚提取浓缩,用甲醇定容。采用Poroshell 120 PFP色谱柱(150 mm×3.0 mm,2.7 μm)分离,以0.1%(v/v)甲酸水溶液和0.1%(v/v)甲酸甲醇溶液为流动相进行梯度洗脱,流速为0.3 mL/min。采用大气压化学电离源、正离子模式,在选择反应监测模式下扫描。结果表明,14种营养成分在0.05~10.0 mg/L范围内相关系数≥0.9971;在不同添加水平下,14种营养成分的回收率为80.7%~100.5%,相对标准偏差<6.0%(n=6);方法的检出限和定量限分别为0.01~0.30 μg/g和0.04~1.00 μg/g。该法灵敏、准确,分析时间快,稳定性好,适用于植物油中14种营养成分的同时检测。  相似文献   

19.
Procedures were assessed for quantifying nine volatile sulfur compounds found in complex gaseous samples collected at a biogas-production plant and a sewage treatment plant. The target compounds were extracted by solid-phase microextraction (using the 75-microm Carboxen-polydimethylsiloxane fiber coating) at 22 degrees C for 20 min, and analyzed by GC-MS. Detection limits ranged between 1 pptv (v/v) for carbon disulfide and 470 pptv (v/v) for hydrogen sulfide. High amounts of organic compounds were found during full-scan analysis of the samples and standard additions to individual sub-samples revealed that the analysis was subject to matrix effects. However, the functions obtained by standard additions were still linear and quantification was possible for all the compounds tested except hydrogen sulfide. No detectable losses were observed during storage in the sampling containers, made of Tedlar film, over a storage period of 20 h. However, water permeated through the walls and the relative humidity in the bag increased during storage until it reached the ambient level. Finally, it was shown that the drying agent, CaCl2, caused no detectable losses of any of the compounds.  相似文献   

20.
Covalent organic frameworks as exceptional hydrogen storage materials   总被引:3,自引:0,他引:3  
We report the H2 uptake properties of six covalent organic frameworks (COFs) from first-principles-based grand canonical Monte-Carlo simulations. The predicted H2 adsorption isotherm is in excellent agreement with the only available experimental result (3.3 vs 3.4 wt % at 50 bar and 77 K for COF-5), also reported here, validating the predictions. We predict that COF-105 and COF-108 lead to a reversible excess H2 uptake of 10.0 wt % at 77 K, making them the best known storage materials for molecular hydrogen at 77 K. We predict that the total H2 uptake for COF-108 is 18.9 wt % at 77 K. COF-102 shows the best volumetric performance, storing 40.4 g/L of H2 at 77 K. These results indicate that the COF systems are most promising candidates for practical hydrogen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号