Semi-crystalline poly(vinyl alcohol) was modified by UV radiation with acrylic acid monomer to get interpenetrating poly(acrylic acid) modified poly(vinyl alcohol), PVAAA, membrane. The stability of various PVAAA membranes in water, 2 M CH3OH, 2 M H2SO4, and 40 wt% KOH aqueous media were evaluated. It was found that the stability of PVAAA membrane is stable in 40 wt% KOH solution. The PVAAA membranes were characterized by differential scanning calorimetry, X-ray diffraction, and thermogravimetry analysis. These results show that (1) the crystallinity in PVAAA decreased with increasing the content of poly(acrylic acid) in the PVAAA membranes. (2) The melting point of the PVAAA membrane is reduced with increasing the content of poly(acrylic acid) in the membrane. (3) Three stages of thermal degradation were found for pure PVA. Compared to pure PVA, the temperature of thermal degradation increased for the PVAAA membrane. The various PVAAA membranes were immersed in KOH solution to form polymer electrolyte membranes, PVAAA-KOH, and their performances for alkaline solid polymer electrolyte were conducted. At room temperature, the ionic conductivity increased from 0.044 to 0.312 S/cm. The result was due to the formation of interpenetrating polymer chain of poly(acrylic acid) in the PVAAA membrane and resulting in the increase of charge carriers in the PVA polymer matrix. Compared to the data reported for different membranes by other studies, our PVAAA membrane are highly ionic conducting alkaline solid polymer electrolytes membranes. 相似文献
Interpenetrating polymer hydrogels (IPHs) of Poly (vinyl alcohol) (PVA) and Poly (acrylic acid) (PAAc) have been prepared by a sequential method: crosslinked PAAc chains were formed in aqueous solution by crosslinking copolymerization of acrylic acid and N, N′-methylenebisacrylamide in the presence of PVA. The application of freezing-thawing cycles (F-T cycles) leads to the formation of a PVA hydrogel within the synthesized PAAc hydrogel. The swelling and the viscoelastic properties of the prepared IPHs were evaluated on the basis of the structural features obtained from solid state 13C-NMR spectroscopy. 相似文献
Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend composition and of the feed mixture composition. The results showed that a polymer blending method could be very useful to develop new membranes with improved permselectivity. The pervaporation properties could be optimized by adjusting the blend composition. All the blend membranes tested showed a decrease in flux with increasing poly(vinyl alcohol) content for both methanol—toluene and ethanol—toluene liquid mixtures. The alcohols permeated preferentially through all tested blend membranes, and the selectivity values increased with increasing poly(vinyl alcohol) content. The pervaporation characteristics of the blend membranes were also strongly influenced by the feed mixture composition. The fluxes increased exponentially with increasing alcohol concentration in the feed mixtures, whereas the selectivities decreased for both liquid mixtures. 相似文献
A hydrophilic/hydrophobic interpenetrating polymer network (IPN) of poly (vinyl alcohol) / polystyrene was prepared by conversion of the IPN of poly (vinyl acetate)/polystyrene. The hydrophilic/hydrophobic IPN was characterized by FT-IR and DSC, and the swelling ratios of the IPN in different solvents were measured. 相似文献
Hybrid blends of poly(vinyl alcohol) (PVA) and collagen hydrolyzate (CH), an added value waste from leather indutry, have been converted by blown molding extrusion, to environmentally degradable films. Blown extruded films comprising 5-15% of CH, were tested as sel fertilizing mulching films and analyzed for their propensity to enviromental degradation. PVA/CH films rapidly disintegrate when buried in soil, and resulted promising for application such as transplanting films, with additional fertilizing action of CH. 相似文献
In the recent years, development of intervertebral disc prosthesis has been of great concern to the world of medicine and science. Substitution of the spinal disc or its part being displaced or damaged due to trauma or a disease process for the artificial structure well imitating high tensile properties and elasticity of the real disc would highly improve the existing treatment techniques. In this work, the attempt to develop the PVA-based hydrogel material for artificial spinal disc has been made. The polymer was initially processed with the use of formaldehyde solution as a crosslinking agent and sulfuric acid as a catalyst. Then properties of the material have been altered by saturating the already existing PVA hydrogel with a mixture of hydrophilic and hydrophobic monomers (2-hydroxyethyl methacrylate and methyl methacrylate) and a subsequent exposure to ionizing radiation (60Co source). In this way, interpenetrating polymer network has been built on the crosslinked PVA scaffold. Resulting structures were tested for their mechanical behavior at different loads. Series of measurements leading to the determination of the physicochemical properties of created gels including crosslink density and swelling abilities were also performed. 相似文献
Aqueous solutions of syndiotacticity-rich poly(vinyl alcohol) (s-PVA) form gels easily. The optimum condition of growth of the calcium tartrate crystal formed by diffusing calcium chloride into hydrogels containing tartaric acid was studied with use ofs- PVA of a syndiotacticity of 56 % and a degree of polymerization of 1460. The crystal grew in the gel of the concentrations of 2 % s-PVA and of 0.5 N tartaric acid at pH=4. The relation between the formation of Liesegang rings and shear modulus of a gel was studied by diffusing silver nitrate into gels containing potassium chromate. The distance between rings decreased with increasing shear modulus of a gel in the range from 670 to 7500 dyne/cm2. The Liesegang rings were not formed for the shear modulus gel for 280 and 16200 dyne/cm2. 相似文献
Poly(vinyl alcohol) (PVA) physical hydrogels were prepared by repeated freeze–thawing cycles using aqueous solutions of two PVA samples having different degrees of syndiotacticity, a‐PVA and s‐PVA with 55% and 61% of syndiotactic diads, respectively. The hydrogels were prepared in the presence of different amounts of lactosilated chitosan derivatives (LC) of different molecular weight. The PVA stereoregularity was found to have a dramatic effect on the amount of PVA incorporated into the hydrogels, leading to remarkable differences in the swelling degree and porosity of a‐PVA and s‐PVA hydrogels. A significant amount of LC was retained in the hydrogels after equilibrium swelling. The swelling of the a‐PVA hydrogels was found to increase significantly by increasing the amount of LC while it was only slightly increased in the case of s‐PVA hydrogels. The amount of LC released after equilibrium swelling was lower when chitosan derivatives with higher molecular weights were used. Increased initial concentrations of LC resulted in much higher porosity of the hydrogels. TGA and DSC studies showed that LC is stabilized by the incorporation in the PVA hydrogels. The melting temperature of the crystalline regions of PVA was not significantly influenced by LC. Conversely, the extension of the crystalline domains increased in the presence of LC. The retention of a chitosan derivative bearing β‐D ‐galactose side chain residues makes these hydrogels potentially useful as scaffolds for hepatocytes culture.
Scanning electron micrographs of PVA‐LC hydrogels: (a) a‐PVA; (b) a‐PVA/LC150 80:20; (c) a‐PVA/LC150 50:50. 相似文献
Dense membranes made by crosslinking of poly(vinyl alcohol) (PVA) with poly(acrylic acid) (PAA) were prepared and tested in pervaporation and differential permeation of water–alcohol mixtures. Instead of a decrease of permeation flux as generally observed with most crosslinking agents, an increase in the permeability was observed with PAA crosslinked membranes at low PAA contents. The permeation flux increases with PAA contents in the polymer with no selectivity reduction for membranes containing less than 15 wt. % PAA. The membranes show good performances to water–2-propanol and water–ethanol mixtures, i.e. high fluxes and high selectivities to pure water. The membranes were stable and highly permeable to water. The enhancement of the permeability of PVA can be explained by a reduced crystallinity and an improved diffusivity due to the presence of PAA. 相似文献