首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we have prepared pH/temperature-sensitive imprinted ionic poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) [P(TBA-co-AAm/MA)] hydrogels for bovine serum albumin (BSA) by using molecular imprinting method. BSA adsorption from aqueous BSA solutions was investigated with two types of hydrogel systems prepared by non-imprinted and imprinted methods. Hydrogels imprinted with BSA showed higher adsorption capacity and specificity for BSA than hydrogels prepared by the usual procedure. At all studied conditions, the highest BSA adsorption was observed in the hydrogel imprinted with 8.63 wt.-% BSA. In addition, the imprinted hydrogels exhibited both for good selectivity BSA and high adsorption rate depending on the number of BSA-sized cavities. Adsorption studies showed that other stimuli, such as pH, temperature and initial BSA concentration also influenced the BSA adsorption capacity of both non-imprinted and imprinted hydrogels.  相似文献   

2.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

3.
Poly(ethylene glycol)(PEG)‐based interpenetrating polymeric network (IPN) hydrogels were prepared for the application of enzyme immobilization. Poly(acrylamide)(PAAm) was chosen as the other network of IPN hydrogel and different concentration of PAAm networks were incorporated inside the PEG hydrogel to improve the mechanical strength and provide functional groups that covalently bind the enzyme. Formation of IPN hydrogels was confirmed by observing the weight per cent gain of hydrogel after incorporation of PAAm network and by attenuated total reflectance/Fourier transform infrared (ATR/FTIR) analysis. Synthesis of IPN hydrogels with higher PAAm content produced more crosslinked hydrogels with lower water content (WC), smaller Mc and mesh size, which resulted in enhanced mechanical properties compared to the PEG hydrogel. The IPN hydrogels exhibited tensile strength between 0.2 and 1.2 MPa while retaining high levels of hydration (70–81% water). For enzyme immobilization, glucose oxidase (GOX) was immobilized to PEG and IPN hydrogel beads. Enzyme activity studies revealed that although all the hydrogels initially had similar enzymatic activity, enzyme‐immobilizing PEG hydrogels lost most of the enzymatic activity within 2 days due to enzyme leaching while IPN hydrogels maintained a maximum 80% of the initial enzymatic activity over a week due to the covalent linkage between the enzyme and amine groups of PAAm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
采用分步法用电子加速器辐射合成了聚丙烯酰胺(PAAm)/聚异丙基丙烯酰胺(PNIPAAm)互穿网络水凝胶,并考察了温度、pH值、离子强度对其溶胀性能的影响.研究表明:互穿水凝胶具有温度敏感性,且其体积相变与互穿网络中PAAm和PNIPAAm含量有关,随着网络中PAAm含量的增加水凝胶的体积相变趋于平缓,可以通过改变PAAm和PNIPAAm的组成比来控制水凝胶的体积相变行为.此外,互穿水凝胶还具有pH敏感性和一定的抗盐性.  相似文献   

5.
A novel adsorbent Pb(II)-imprinted interpenetrating polymer network (IPN) of epoxy resin-triethylenetetramine and lead methacrylate-acrylamide-1,4-butanedioldiacrylate (BDDA) was synthesized by the metal ionic imprinted polymer (MIIP) technique. The IPN was prepared by in situ sequential polymerization, and the coordination interaction of Pb(II) and functional groups of the IPN adsorbent was discussed using FT-IR spectra. The characters of the IPN were investigated by a series of experiments. The experimental results show that trace Pb(II) ions can be quantitatively preconcentrated at pH 4.0 with recoveries >95%. The maximum static adsorption capacity of the ion-imprinted adsorbent was 138.6?mg?g?1. The imprinted IPN has a higher adsorption capacity and selectivity towards Pb(II). Moreover, the Pb(II)-imprinted IPN shows superior reusability and stability. The precision (R.S.D.) for 11 replicate adsorbent extractions of 20?ng?mL?1 Pb(II) was 2.9%. The accuracy of the proposed procedure was verified by analysing three standard reference materials. The prepared ion-imprinted IPN adsorbent was applied to three natural samples and also yielded satisfactory results. That is to say, the Pb(II)-imprinted IPN is suitable for environmental Pb(II) ionic selective removal as an SPE adsorbent.  相似文献   

6.
A series of granulated semi‐interpenetrating polymer network (semi‐IPN) superabsorbent hydrogels composed of chitosan‐g‐poly(acrylic acid) (CTS‐g‐PAA) and poly(vinyl alcohol) (PVA) were prepared by solution polymerization using ammonium persulfate (APS) as an initiator and N,N′‐methylenebisacrylamide (MBA) as a crosslinker. The effects of reaction conditions such as the concentration of MBA, the weight ratio of AA to CTS, and the content of PVA on water absorbency were investigated. Infrared (IR) spectra and differential scanning calorimetry (DSC) analyses confirmed that AA had been grafted onto CTS backbone, and PVA semi‐interpenetrating into CTS‐g‐PAA networks. SEM analyses indicated that CTS‐g‐PAA/PVA has improved porous surface and PVA was uniformly dispersed in CTS‐g‐PAA network. The semi‐IPN hydrogel containing 10 wt% PVA shows the highest water absorbency of 353 and 53 g g?1 in distilled water and 0.9 wt% NaCl solution, respectively. Swelling behaviors revealed that the introduction of PVA could improve the swelling rate and enhance the pH stability of the superabsorbent hydrogel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The synthesis of sequential full interpenetrating polymer networks (IPNs) based on poly (N‐isopropylacrylamide) (PNIPAAm) and negatively charged poly(N‐vinyl‐2‐pyrrolidone) (PNVP) was described and their swelling, drug release, and diffusion studies were investigated. PNIPAAm was used as a host network. According to swelling experiments, IPNs gave relatively lower swelling ratios compared to PNIPAAm hydrogel due to the higher cross‐linking density. Lidocaine (LD) was used as a model drug for the investigation of drug release behavior of IPNs. LD uptake of the IPNs were found to increase from 24 to 166 (mg LD / g dry gel) with increasing amount of PNIPAAm and AMPS contents in the IPN structure. It was observed that the specific interaction between drug and AMPS co‐monomer influenced the drug release profile. In the diffusion transport mechanism study in water, the results indicated that the swelling exponents n for all IPNs are in the range from 0.50 to 0.72. This implies that the swelling transport mechanism was transferred from Fickian to non‐Fickian transport, with increasing AMPS content and NIPAAm character in the IPN structure. In addition, diffusion of LD within the IPNs showed similar trend. The incorporation of AMPS leads to an increase in electrostatic interaction between charge sites on carboxylate ions and cationic LD molecules. Therefore, the highest diffusion coefficient (D) of drug was found for IPN2 sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a novel classical thermo‐ and salt‐sensitive semi‐interpenetrating polymer network (semi‐IPN) hydrogel composed of poly(N,N‐diethylacrylamide) (PDEAm) and κ‐carrageenan (KC) was synthesized by free radical polymerization. The structure of the hydrogels was studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR and SEM revealed that the semi‐IPN hydrogels possessed the structure of H‐bonds and larger number of pores in the network. Compared to the PDEAm hydrogel, the prepared semi‐IPN hydrogels exhibited a much faster response rate to temperature changes and had larger equilibrium swelling ratios at temperatures below the lower critical solution temperature (LCST). The salt‐sensitive behavior of the semi‐IPN hydrogels was dependent on the content of KC. In addition, during the reswelling process, semi‐IPN hydrogels showed a non‐sigmoidal swelling pattern. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Semi‐interpenetrating network (semi‐IPN) hydrogels, composed of poly(aspartic acid) (PAsp) and poly(acrylic acid) (PAAc) with various ratios of PAsp to AAc, were prepared. In this work, swelling kinetics was investigated through calculating some parameters. The swelling ratios were measured at room temperature, using urea solutions as liquids to be absorbed. Compared to in deionized water, the hydrogels showed larger swelling ratios in urea solutions, which might be attributed to the chemical composition of urea. The equilibrium swelling ratio could achieve 600 g/g, and the equilibrium urea/water contents were more than 0.99. The diffusion exponents were between 0.5 and 0.7, suggesting that the solvent transport into the hydrogel was dominated by both diffusion and relaxation controlled systems. Therefore, the PAsp/PAAc semi‐IPN hydrogels were appropriate to carry substances in a urea/water environment for pharmaceutical, agricultural, environmental, and biomedical applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 666–671, 2010  相似文献   

10.
考察了以牛乳清蛋白(BSA)为模型药物,通过相平衡分配法制备载药瓜胶(GG)/聚丙烯酸(PAA)互穿聚合物网络(IPN)水凝胶的工艺条件.借助紫外可见光谱仪研究了载药水凝胶在结肠酶存在下的控制释放行为.结果表明:载药容量(CM)随瓜胶、丙烯酸用量的增加而下降,半IPN水凝胶的Cm较全IPN的略大;结肠酶能明显提高半IPN与全IPN中的BSA释放速率,且提高幅度随GG含量的增加而加快,GG/PAA IPN水凝胶具有结肠定位降解的特性,有望成为靶向结肠给药的理想载体材料.  相似文献   

11.
Poly(acrylamide‐co‐acrylic acid)/polyacrylamide [P(AM‐co‐AA)/PAM] hydrogel with superporous and interpenetrating network (IPN) structure was prepared by a prepolymerization reaction and a synchronous polymerization reaction and frothing process. Scanning electron microscope (SEM) images show that the resultant hydrogel possesses abundant interconnected pores. DSC indicates that the porous structure enhances the swelling ratio and reduces the interaction between water and the hydrogel. In contrast, the IPN by PAM decreases water absorbency and enhances water retentivity. It is found that a superporous stucture in the hydrogel increases the equilibrium swelling ratio and decreases the compressive strength of the hydrogel. On the other hand, the increase in AM oligomer (oligo‐AM) amount decreases the equilibrium swelling ratio and improves the compressive strength of the hydrogel. Therefore, the two‐steps synthesis method can be used to construct a hydrogel with superporous and IPN structure. The swelling and mechanical properties of the hydrogel can be improved effectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This study reports the effect of substituents in the ortho position of polyaniline on the adsorption capacity to remove the anionic dye methyl orange (MO) from an aqueous solution. The aim of this study is the synthesis of polyaniline (PANI) and its derivatives, poly-o-methylaniline (poly-o-toluidine, POT) and poly-o-methoxyaniline (poly-o-anisidine, POA) for the adsorption removal of MO dye. All polymers were obtained by oxidative polymerization of the corresponding monomers and characterized by scanning electron microscopy (SEM) and infrared spectroscopy (IR). The average particle size of the polymer was about 200 nm. The effect of various parameters such as pH, temperature, adsorption time and initial concentration was analyzed. It was found that the adsorption capacity for dye removal increases from 50.68 to 222.56 mg g−1 for PANI, from 16.89 to 66.57 mg g−1 for POT, and from 97.26 to 532.54 mg g−1 for POA with an increase in the initial dye concentration from 5 up to 50 mg L−1. For all polymers, the equilibrium state of MO adsorption was reached in 50 min. The results showed that MO adsorption on PANI, POT, and POA is well described by a pseudo second order kinetic model. Isothermal studies have shown that adsorption is in good agreement with the Langmuir isotherm model, as evidenced by higher values of correlation coefficients. Based on the data of thermodynamic studies, it was concluded that MO adsorption on PANI, POT, and POA is spontaneous and endothermic.  相似文献   

13.
Poly(vinyl alcohol) (PVA) was blended with sodium alginate (Alg) in various ratios and crosslinked with calcium chloride and made into hydrogel membranes. The dependence of the swelling behavior of these Alg‐Ca/PVA hydrogels on pH was investigated. The temperature‐dependent swelling behavior of the semi‐interpenetrating network (semi‐IPN) hydrogels was examined at temperatures from 2 to 45°C and the enthalpy of mixing (ΔHmix) was determined at various temperatures. The molecular structure of the hydrogels was studied by infrared spectroscopy and their water structure in the semi‐IPN hydrogels was measured by differential scanning calorimetry (DSC). The influence of Ca2+ content on the network structure of Alg‐Ca/PVA hydrogels was investigated in terms of the compressive elastic modulus, effective crosslinking density, and the polymer–solvent interaction parameter based on the Flory theory. The loading of alizarin red S (ARS) followed the Langmuir isotherm mechanism and the release kinetics of ARS from the Alg‐Ca/PVA hydrogels followed the Fickian diffusion mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The macroporous polydivinylbenzene/poly(methyl acrylate) interpenetrating polymer network (PDVB/PMA IPN) was prepared by the sequential suspension polymerization method, and was modified to be hydrophobic–hydrophilic macroporous polydivinylbenzene/poly (sodium acrylate) IPN (PDVB/PNaA IPN) by converting the PMA to PNaA under the condition of base. The effects of different mass ratio of the two networks and different cross‐linking degree of the second network on the pore structure and adsorption capacity of PDVB/PNaA IPN resin were studied. The PDVB/PNaA IPN resin whose adsorption quantity is the biggest was chosen to study further. The pore structure, the weak acid exchange capacity, the water retention capacity, and the swelling ability of PDVB/PNaA IPN resin were measured. The study focused on the adsorption isotherms of berberine at different temperatures. Isosteric adsorption enthalpy, adsorption Gibbs free energies can be calculated according to thermodynamic functions. The results show that the saturated adsorption quantity of berberine is up to 109.4 mg ml?1 (wet resin) by the way of dynamic adsorption and desorption experiment. The resin could be reused by the mixture with 0.5% sodium chloride and 80% ethanol. On the one hand the hydrophobic PDVB in the PDVB/PNaA IPN resin has the ability of adsorption using π–π interaction, and on the other hand the hydrophilic PNaA in the PDVB/PNaA IPN resin has the ability of adsorption using ion exchange interaction. An important conclusion can be drawn that the PDVB/PNaA IPN resin has a promising application prospect in extracting and separating quaternary ammonium type alkaloids such as berberine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Poly(vinylidene fluoride) (PVDF) membranes were hydrophilic modified with hydroxyl group terminated hyperbranched poly(amine‐ester) (HPAE). Fourier transform infrared spectroscopy (FT‐IR) was used to study the chemical change of PVDF membranes. X‐ray photoelectron spectroscopy (XPS) indicated that some HPAE molecules were retained in PVDF membrane through polymer chain coiling. The presence of HPAE would improve the hydrophilicity of PVDF membrane. Scanning electron microscopy (SEM) was employed to characterize the morphology of different membranes. The thermodynamic stability for PVDF/DMAc/HPAE/Water system was characterized by the determination of the gelation values. Precipitation kinetics for PVDF/DMAc/HPAE/Water system was studied by precipitation time measurement. The water contact angle indicated that the hydrophilicity and the biocompatibility corresponding to protein adsorption of PVDF membrane were improved significantly after blending with hydrophilic HPAE molecules. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Novel interpenetrating network (IPN) hydrogels (PNIPAAm/clay/PAAm hydrogels) based on poly(N‐isopropylacrylamide) (PNIPAAm) crosslinked by inorganic clay and poly(acrylamide) (PAAm) crosslinked by organic crosslinker were prepared in situ by ultraviolet (UV) irradiation polymerization. The effects of clay content on temperature dependence of equilibrium swelling ratio, deswelling behavior, thermal behavior, and the interior morphology of resultant IPN hydrogels were investigated with the help of Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), scanning electron microscope (SEM). Study on temperature dependence of equilibrium swelling ratio showed that all IPN hydrogels exhibited temperature‐sensitivity. DSC further revealed that the temperature‐sensitivity was weakened with increasing amount of clay. Study on deswelling behavior revealed that IPN hydrogels had much faster response rate when comparing with PNIPAAm/clay hydrogels, and the response rate of IPN hydrogels could be controlled by clay content. SEM revealed that there existed difference in the interior morphology of IPN hydrogels between 20 [below lower critical solution temperature (LCST)] and 50 °C (above LCST), and this difference would become obvious with a decrease in clay content. For the standpoint of applications, oscillating swelling/deswelling behavior was investigated to determine whether properties of IPN hydrogels would be stable for potential applications. Bovine serum albumin (BSA) was used as model drug for in vitro experiment, the release data suggested that the controlled drug release could be achieved by modulating clay content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 96–106, 2009  相似文献   

17.
The surface‐grafting ion‐imprinting technology was applied to synthesis of a new Co(II)‐imprinted polymer [Co(II)‐IP], which could be used for selective removal of Co(II) from aqueous solutions. The prepared polymer was characterized by using the infrared spectra (IR), X‐ray diffractometer (XRD), X‐ray energy dispersion spectroscopy (EDS) and scanning electron microscopy (SEM). The maximum adsorption capacity values for the Co(II)‐imprinted polymer and non‐imprinted polymer (NIP) were 22 and 8 mg/g, respectively. The Freundlich equation fitted the adsorption isotherm data well. The applicability of two kinetic models including pseudo‐first‐order and pseudo‐second‐order models was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity, and correlation coefficients. Results suggested that chemical process could be the rate‐limiting step in the adsorption process. And the adsorption of Co(II) on the Co(II)‐imprinted polymer was endothermic. The relative selectivity coefficients of the Co(II)‐imprinted polymer for Co(II)/Pb(II), Co(II)/Cu(II), Co(II)/Ni(II), Co(II)/Sr(II) and Co(II)/Cs(I) were respectively 11.5, 6.1, 13.8, 9.4, and 8.1 times greater than that of the non‐imprinted polymer. Eventually, the desorption conditions of the adsorbed Co(II) from the Co(II)‐imprinted polymer were also studied in batch experiments.  相似文献   

18.
Creatinine imprinted cryogel (MIP) cartridge was prepared with functional monomer N-methacryloyl-(L)-histidinemethylester (MAH) under frozen conditions. Creatinine adsorption studies and selectivity of MIP cryogel were evaluated in aqueous solution and artificial urine sample. Maximum adsorbed amount of creatinine was calculated as 6.83 mg/g polymer for MIP cryogel. Langmuir and Freundlich adsorption isotherm models were used to investigate the adsorption behaviour of creatinine. In the artificial urine sample; recovery amounts of creatinine were found 34.7–46.2%. Creatinine imprinted cryogel (MIP) cartridge recognized creatinine, 4.58 and 4.37 times greater competitive molecules. MIP cryogel catridge was repeatedly used many times for adsorption desorption cycles.  相似文献   

19.
This study reports the preparation of poly(sodium-4-styrene sulfonate) (PSS) treated bentonite and clinoptilolite to prevent the agglomeration and sedimentation of these inorganic fillers during the preparation of hydrogel. For this purpose PSS treated fillers were prepared by using various techniques (dip and dry, hydrothermal, one-step ball milling and ultrasonication methods). The most suitable technique for preparing these PSS treated inorganic fillers (abbreviated as BP-dip and CP-dip) was the dip and dry method. BP-dip and CP-dip based polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) composite hydrogels were prepared using the freeze/thawing method after the addition of one of BP-dip and CP-dip inorganic fillers in various amounts. The swelling properties, stability behaviors and Rhodamine B (RhB) adsorption of the composite hydrogels were studied. It was found that the swelling degrees of CP-dip and BP-dip based composite hydrogels with 25 mg of filler were higher than that of all other samples. The kinetic mechanism of RhB adsorption process and the related characteristic kinetic parameters were investigated by Pseudo kinetic models. The adsorption kinetics results for RhB adsorption were found best fitted with pseudo-second-order kinetics model. The maximum RhB adsorption capacity was determined to be for PVA/PVP-CP-dip25, which was 3.3 times higher than that of the unfilled PVA/PVP hydrogel.  相似文献   

20.
铜(Ⅱ)离子印迹聚合物的制备及性能   总被引:1,自引:0,他引:1  
选择油酸为功能单体, 二乙烯基苯为交联剂, 应用乳液聚合方法制备了Cu(Ⅱ)离子印迹聚合物, 并对其性能和吸附机理进行了研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号