首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction between similarly charged surfaces can be attractive at high electrostatic coupling constants Ξ = l(B)Z(2)/μ(GC), where l(B) is the Bjerrum length, μ(GC) the Gouy-Chapman length, and Z the valency of counterions. While this effect has been studied previously in detail, as a function of surface charge density and valency of the pointlike counterions, much less is known about the effect of counterion size. We apply the Wang-Landau sampling Monte Carlo (MC) simulation method to compute the free energy F as a function of the scaled distance between the plates D?=D/μ(GC) for a range of Ξ and scaled counterion radii R?=R/μ(GC). We find that for large Ξ and small ion radius, there is a global equilibrium distance D?=D?(eq)=2(1+R?), correctly giving the expected value at the point counterion limit. With increasing R? the global minimum in F(D?) changes to a metastable state and finally this minimum vanishes when R? reaches a critical value, which depends on Ξ. We present a state diagram indicating approximate boundaries between these three regimes. The Wang-Landau MC method, as it is applied here, offers a possibility to study a wide spectrum of extended problems, which cannot be treated by the use of contact value theorem.  相似文献   

2.
Protein adsorption on charged inorganic solid materials has recently attracted enormous interest owing to its various possible applications, including drug delivery and biomaterial design. The need to combine experimental and computational approaches to get a detailed picture of the adsorbed protein properties is increasingly recognised and emphasised in this review. We discuss the methods frequently used to study protein adsorption and the information they can provide. We focus on model systems containing a silica surface, which is negatively charged and hydrophilic at physiological pH, and two contrasting proteins: bovine serum albumin (BSA) and lysozyme (LSZ) that are both water soluble. At pH 7, BSA has a net negative charge, whereas LSZ is positive. In addition, BSA is moderately sized and flexible, whereas LSZ is small and relatively rigid. These differences in charge and structural nature capture the role of electrostatics and hydrophobic interactions on the adsorption of these proteins, along with the impact of adsorption on protein orientation and function. Understanding these model systems will undoubtedly enhance the potential to extrapolate our knowledge to other systems of interest.  相似文献   

3.
Iron and copper present as humic and other negatively charged colloids are studied by sorption on indium-treated XAD-2 resin and DEAE-Sephadex A-25 anion exchanger and by filtration. The iron species include colloidal particles consisting of hydrated iron(III) oxide, clay and humic substances and smaller amounts of hydrated iron(III) oxide-clay or -silica aggregates, whereas most of the copper exists as humic complexes.  相似文献   

4.
A simple model that shows an additional attraction between solvated surfactant-coated systems is developed. The model simply calculates the van der Waals attraction between the solvated surfactant layers. This attraction was previously neglected as it was expected to have a small energetic contribution. This is indeed the case; however, despite the small energetic contribution the force is large. In other words, although the expression that we get is small in energy, it is large in force. This is particularly important for surface force balance measurements, where using the developed expression, some apparent discrepancies between measured and theoretical values may now have a possible explanation, and especially those associated with surfactant-coated surfaces. We apply the new expression to a given system, and compare with the experimental results.  相似文献   

5.
The effects of surface charge density on DNA hybridization have been investigated on a mixture of hydrogen-, oxygen-, and amine-terminated diamond surfaces. A difference in the hybridization efficiencies of complementary and mismatched DNA was clearly observed by fluorescence and potentiometric observations at a particular coverage of oxygen. In the fluorescence observation, singly mismatched DNA was detected with high contrast after appropriate hybridization on the surface with 10-20% oxygen coverage. The amount of oxygen in the form of C-O(-) (deprotonated C-OH) producing the surface negative-charge density was estimated by X-ray photoelectron spectroscopy. Electrolyte solution gate field-effect transistors (SGFETs) were used for potentiometric observations. The signal difference (change in gate potential) on the SGFET, which was as large as approximately 20 mV, was caused by the difference in the hybridization efficiencies of complementary target DNA (cDNA) and singly mismatched (1MM) target DNA with a common probe DNA immobilized on the same SGFET. The reversible change in gate potential caused by the hybridization and denaturation cycles and discriminating between the complementary and 1MM DNA targets was very stable throughout the cyclical detections. Moreover, the ratio of signals caused by hybridization of the cDNA and 1MM DNA targets with the probe DNA immobilized on the SGFET was determined to be 3:1 when hybridization had occurred (after 15 min on SGFET), as determined by real-time measurements. From the viewpoint of hybridization kinetics, the rate constant for hybridization of singly mismatched DNA was a factor of approximately 3 smaller than that of cDNA on this functionalized (oxidized and aminated) diamond surface.  相似文献   

6.
The first observation of capture of He atoms by negatively charged Buckminsterfullerence (C60) is reported. The collision energy dependence of the production of the endohedral complex is presented in the region of the energetic threshold and compared directly with results obtained using positively charged C60. The threshold for capture by negative ions is shifted by ≈ 1.5 eV to higher energies. This shift can be accounted for by considering the different internal energies of the positive and negative ions.  相似文献   

7.
Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), ζ-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
The water-soluble (> 200 mg/mL) antibiotics tobramycin, kanamycin, and neomycin spontaneously produce rigid fibers on negatively charged surfaces (mica, graphite, DNA). Atomic force microscopy showed single strands of tobramycin on mica at pH 7 with a length of several hundred nanometers and a diameter of 0.5 nm and double helices with a diameter of 1.0 nm and a helical pitch of 7 nm. At pH 13 (NaOH) up to 15 microm long, rigid fibers with a uniform height of 2.4 nm and an apparent helical pitch of 30 nm were formed along the sodium silicate channels on the surface of mica. Kanamycin and neomycin behaved similarly. Fibers of similar length and width, but without secondary structure, were obtained from aqueous solutions at pH 7 on amorphous, hydrophilized carbon and characterized by transmission electron microscopy. Overstretched phage lambda-DNA strands with a height of 1.0 nm on mica did not interact with tobramycin coils at pH 7. After treatment with EDTA, however, the height of the magnesium-free lambda-DNA strands grew from 1.0 to 3.8 nm after treatment with tobramycin, which suggests a wrapping by the supramolecular fibers. Such fibers may interact with F-actin fibers in biological cells, which would explain the known aggressiveness of aminoglycosides toward bacterial cell membranes and their ototoxicity.  相似文献   

9.
The effect of dissolved gas on the hydrophobic attraction between double-chained surfactant monolayers physisorbed on mica has been studied using a surface forces apparatus (SFA). Distance vs time data were obtained over the full distance regime from D approximately 1000 A down to contact using the dynamic SFA method. Removal of dissolved gas was seen to reduce the range of the attraction while the short-range attraction (under approximately 250 A) remained unchanged. The implications for the possibility of two distinct force regimes in the interactions between hydrophobic surfaces are discussed.  相似文献   

10.
Separation of negatively charged carbohydrates by capillary electrophoresis   总被引:3,自引:0,他引:3  
Capillary electrophoresis (CE) has recently emerged as a highly promising technique consuming an extremely small amount of sample and capable of the rapid, high-resolution separation, characterization, and quantitation of analytes. CE has been used for the separation of biopolymers, including acidic carbohydrates. Since CE is basically an analytical method for ions, acidic carbohydrates that give anions in weakly acid, neutral, or alkaline media are often the direct objects of this method. The scope of this review is limited to the use of CE for the analysis of carbohydrates containing carboxylate, sulfate, and phosphate groups as well as neutral carbohydrates that have been derivatized to incorporate strongly acidic functionality, such as sulfonate groups.  相似文献   

11.
A key factor controlling the interactions between surfaces in aqueous solutions is the surface charge density. Surfaces typically become charged though a titration process where surface groups can become ionized based on their dissociation constant and the pH of the solution. In this work, we use a Monte Carlo method to treat this process in a system with two planar surfaces with explicitly described ionizable sites in a salt solution. We focus on a system with a surface density of ionizable sites set to 4.8 nm(-2), corresponding to silica. We find that the surface charge density changes as the surfaces come close to contact due to interactions between the ionizable groups on each surface. In addition, we observe an attraction between the surfaces above a threshold surface charge, in good agreement with previous theoretical predictions based on uniformly charged surfaces. However, close to contact we find the force is significantly different than for the uniformly charged case.  相似文献   

12.
The adsorption of a long weakly charged flexible polyelectrolyte in a salt solution onto an oppositely charged spherical surface is investigated. An analytical solution for Green's function is derived, which is valid for any sphere radius and consistently recovers the result of a planar surface in the limit of large sphere radii, by substituting the Debye-Hückel potential via the Hulthén potential. Expressions for critical quantities like the critical radius and the critical surface charge density are provided. In particular, we find a universal critical line for the sphere radius as a function of the screening length separating adsorbed from desorbed states. Moreover, results for the monomer density distribution, adsorbed layer thickness, and the radius of gyration are presented. A comparison of our theoretical results with experiments and computer simulations yields remarkably good agreement.  相似文献   

13.
Using classical density functional theory (DFT) we analyze the structure of the density profiles and solvation pressures of negatively charged colloids confined in slit pores. The considered model, which was already successfully employed to study a real colloidal (silica) suspension [S. H. L. Klapp et al., Phys. Rev. Lett. 100, 118303 (2008)], involves only the macroions which interact via the effective Derjaguin-Landau-Verwey-Overbeek (DLVO) potential supplemented by a hard core interaction. The solvent enters implicitly via the screening length of the DLVO interaction. The free energy functional describing the colloidal suspension consists of a hard sphere contribution obtained from fundamental measure theory and a long range contribution which is treated using two types of approximations. One of them is the mean field approximation (MFA) and the remaining is based on Rosenfeld's perturbative method for constructing the Helmholtz energy functional. These theoretical calculations are carried out at different bulk densities and wall separations to compare finally to grand canonical Monte Carlo simulations. We also consider the impact of charged walls. Our results show that the perturbative DFT method yields generally qualitatively consistent and, for some systems, also quantitatively reliable results. In MFA, on the other hand, the neglect of charge-induced correlations leads to a breakdown of this approach in a broad range of densities.  相似文献   

14.
An expression for the single-particle thermal diffusion coefficient of a charged colloidal sphere is derived on the basis of force balance on the Brownian time scale in combination with thermodynamics. It is shown that the single-particle thermal diffusion coefficient is related to the temperature dependence of the reversible work necessary to build the colloidal particle, including the core, the solvation layer, and the electrical double layer. From this general expression, an explicit expression for the contribution of the electrical double layer to the single-particle thermal diffusion coefficient is derived in terms of the surface charge density of the colloidal sphere, the electrostatic screening length, and its core radius, to within the Debye-Hückel approximation. This result is shown to explain experimental data, for both thin and thick double layers. In addition, a comparison with other theories is made.  相似文献   

15.
The response of charged colloids to electric fields is determined by combined phenomena occurring first in the electric double layer to then develop into long-range perturbations of ion concentration, local fields, and solvent flows. When particles are non-spherical, the loss of symmetry affects the short- and long-ranged processes modifying their behavior as observed through their electrophoretic mobility, dielectric permittivity, and electro-optical response. Recent measurements and theoretical developments have revealed phenomena characteristic for non-spherical particles, such as the doubling of the relaxations in the dielectric spectra, the appearance of torque-inducing hydrodynamic flows, and the anomalous perpendicular alignment. In this article we discuss in a unifying frame the recent experimental and theoretical progresses about the electrokinetic behavior of charged non-spherical colloids.  相似文献   

16.
This paper presents results demonstrating the role of temperature and specific ions in mediating attraction between polymer-coated colloids and determining their equilibrium phase behavior. In particular, theoretical predictions of continuum van der Waals attraction between poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO)-coated polystyrene colloids are used to explain measured temperature and specific ion-dependent fluid-gel transitions in dispersions of these particles. Building on previous studies of PEO-PPO-PEO-coated polystyrene colloids dispersed in aqueous NaCl media, this work reports rheologically measured fluid-gel transitions as a function of temperature and NaCl/MgSO4 composition. Adhesive-sphere predictions of percolation thresholds are fit to measured fluid-gel data by allowing the adsorbed copolymer layer thickness as a single adjustable parameter. This allows the attraction between the PEO-PPO-PEO layers to be interpreted as a function of temperature and NaCl/MgSO4 composition. Quantitative predictions of a polymeric van der Waals attraction associated with the layer collapse in diminishing solvent conditions provides a simple mechanism for explaining the measured fluid-gel data as a dynamic percolation transition. Ultimately, this work identifies the importance of continuum polymeric van der Waals attraction for explaining specific ion-dependent phenomena.  相似文献   

17.
18.
The separation of two highly negatively charged enantiomeric organic disulfates containing two chiral centers was investigated by capillary electrophoresis using cyclodextrin based chiral selectors added to the run buffer. The optimum separation for the enantiomers was achieved in less than 3 min at 25 degrees C with a run buffer of 10 mM glycine pH 2.4 and 5 mM QA-beta-CD, which is a positively charged quaternary ammonium beta-cyclodextrin derivative. The method resulted in baseline resolution, excellent linearity, and highly reproducible migration times allowing facile evaluation of the enantiomeric purity of the individual isomers. Detection limits for the enantiomeric pair were determined to be 0.3 ng/microl (S/N = 3). The nature of the selector-enantiomer interaction and a quantitative measurement of the apparent stability constants that governed chiral discrimination of the enantiomers with QA-beta-CD were also investigated by UV-Vis spectroscopy and electrospray ionization mass spectrometry.  相似文献   

19.
The salt separations of negatively charged gel-filled membranes composed of poly(2-acrylamido-2-methylpropanesulfonic acid) gels anchored within a polypropylene microporous substrate have been determined experimentally and modeled theoretically. The separation of these membranes were calculated by both the Teorell, Meyer and Sievers (TMS) model and the Donnan–Steric Pore (DSP) model coupled with the extended Nernst–Planck equation. For modeling, the membrane effective thickness, effective charge density, and pore radius were either directly measured or calculated from theories without the use of fitting procedures. Good agreement between the experimental measurements and the theoretical calculations of salt separation was observed. For the theoretical calculations, the TMS model is suitable for membranes with moderate gel polymer volume fractions, while the DSP model is more suitable for membranes with high gel polymer volume fractions. Moreover, with a calculated constant effective charge density, the salt separation with different salt concentrations could be accurately predicted. The separation of various other salts could also be predicted with good accuracy.  相似文献   

20.
A new solvation model, named shells theory of solvation, is proposed. In this approach, the solvent is divided in two regions, the S1 shell, close to the solute and describing specific solute–solvent interactions, and the S2 shell, representing the remain solvent and accounting for the long-range interaction contribution. A simple theoretical equation can be derived which allows the computation of the solvation free energy using two-point thermodynamic integration and configurations generated from molecular dynamics simulation. The discrete/continuum version of this theory provides rigorous theoretical foundations for the popular long-range Born correction and presents a new reliable expression for including this contribution. Further, it converges to the full discrete representation of the solvent when the number of solvent molecules goes to infinity. The method can be easily applied when the solute–solvent interaction (S1 shell) is treated by full quantum mechanics, while the S2 shell is described by a dielectric continuum solvation method. A simple test of the theory was done for solvation of fluoride ion in benzene solution. The S1 shell was composed of the fluoride ion plus 32 benzene molecules, and the interaction with the S2 shell was calculated at Hartree–Fock level with the MINI basis set and using the polarizable continuum model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号