首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarized Raman spectra were recorded for oriented γ- La2S3 crystals;unpolarized spectra were obtained for y- Ce2S3, for (La- Ce)2S3 solid solutions, and for XLn2S4 compounds (X is metal). The observed crystalline modes are assigned according to symmetry types. It was found that vacancies are distributed in the cation sublattice statistically;conditions for ordering of metal atoms are examined. La 2S3 shows resonance scattering at λ = 647.09 nm;this is likely to be due to disorder in the crystal lattice. Translated fromZhumal Struktumoi Khimii, Vol. 38, No. 4, pp. 605–615, July–August, 1997.  相似文献   

2.
We present here infrared absorption spectra of dithia tetraphenylporphine and its cation in the 450–1600 and 2900–3400 cm−1 regions. Most of the allowed IR bands are observed in pairs due to overallD 2h point group symmetry of the molecule. The observed bands have been assigned to the porphyrin skeleton and phenyl ring modes. Some weak bands, which are forbidden underD 2h , also appear in the spectra due to the distortion of the molecule from planarity-caused by the out-of-plane positioned N and S atoms. Increased intensity of some phenyl ring bands compared to free-base tetraphenylporphine is explained on the basis of rotation of phenyl rings towards the mean molecular plane. Contrary to the point group symmetry of cation of dithia tetraphenylporphine, certain bands are observed to be degenerate due to identical bonding arrangements in pyrrole rings of the cation  相似文献   

3.
A universal program for variational calculations of molecular symmetry in solving anharmonic vibrational problems, realized by the author, is described. The program uses the group-theoretical method. Symmetrized basis wave functions are constructed with the aid of the generalized KJebsch-Gordan series suggested by the author. The method of constructing symmetrized basis wave functions and the program for adequate calculations of molecular symmetry were verified for many molecules of different symmetry groups: Oh, O, Td, Th, T, D∞h, Ct8v, Dnd, Dnh, Dn, Cnv, Cnh, S2n, Cn, Ci, Cs, and C1 where 2 ≤n ≤6. It was confirmed that the program provides correct results and high-speed operation. Translated fromZhurnal Strukturnoi Khimii, Vol. 38, No. 6, pp. 1146–1153, November–December, 1997.  相似文献   

4.
The results of quantum chemical calculations of the electronic structure and geometry of octahedral clusters [Mo6S8(CN)6]6−, [Mo6Se8(CN)6]6−, [Re6S8(CN)6]4−, and Rh6(CO)16 by the ab initio SCF (RHF) and DFT (B3LYP) methods with various basis sets are presented. The electronic states of the clusters under study in ideal spherically symmetric potential were classified in the orbital quantum number l (1s, 1p, 1d, 1f, 1g, 1h, 1i), l = 0–6. In real crystal field with Oh symmetry these states are split. The calculated new electronic states were matched to the irreducible representations of the point symmetry group Oh. The polarizabilities of the compounds considered are 55–65 Å3. A new model for the electronic structure of octahedral clusters containing M6 groups was proposed. The model is based on the idea of free electrons moving in spherically symmetric potential field. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2617–2624, December, 2005.  相似文献   

5.
A method for calculating the asymmetry parameters of molecules based on Avnir’s CSM approach combined with the “dissymmetry function” method is suggested. The performance of the approach is demonstrated on various geometrical models — high-symmetry antiprisms of S10 and D5 symmetry groups, helices, and molecular objects. It is shown that the MCSM method unambiguously determines the symmetry element or estimates the degree of asymmetry for molecules from different structural classes. A. V. Bogatskii Physiocochemical Institute, Ukrainian Academy of Sciences. Odessa State University. Translated fromZhurnal Strukturnoi Khimii, Vol. 39, No. 3, pp. 547–552, May–June, 1998.  相似文献   

6.
Ultrasonic velocity and density values are measured for aqueous solutions containing 2.00 mol.%, 4.00 mol.%, and 5.00 mol.% glycine in a temperature range of 15–65°C, 5.50 mol.% glycine (20–65°C), and 6.00 mol.% glycine (25–65°C). Adiabatic compressibilities (κS) and molar adiabatic compressibilities (KS) are calculated. The values of κS and KS decrease monotonically with an increase in glycine concentrations up to saturation at all the temperatures. The temperature dependences of κS and κS have minima that are typical of water and aqueous solutions; the positions of the minima depend on the glycine concentration. The temperature coefficients of the molar compressibility, KS/∂T, change their signs from negative to positive at lower temperatures (by approximately 10 deg) than κS/∂T.  相似文献   

7.
Tautomeric and structural properties of dibenzoylmethane, C6H5–C(O)–CH2–C(O)–C6H5, have been investigated by gas-phase electron diffraction (GED) and quantum chemical calculations (B3LYP and MP2 approximation with different basis sets up to cc-pVTZ). Analysis of GED intensities resulted in the presence of 100(5)% enol tautomer at 380(5) K. The enol ring possesses C S symmetry with a strongly asymmetric hydrogen bond. The two phenyl rings are rotated with respect to the enol ring by 15.1(5.0) and 12.1(5.8)°. The experimental geometric parameters are reproduced very closely by the B3LYP/cc-pVTZ method.  相似文献   

8.
The complexation reactions of dibenzo-18-crown-6 (DB18C6) with Ce3+, Y3+, UO22 +\mathrm{UO}_{2}^{2 +} and Sr2+ cations were studied in acetonitrile–dioxane (AN–dioxane) binary solvent solutions at different temperatures by the conductometric method. The stability constants of the resulting 1:1 complexes were determined from computer fitting of the conductance–mole ratio data. The results show that dibenzo-18-crown-6 does not exhibit selectivity for the cation whose ionic size is closest to the cavity size of this macrocyclic ligand in AN–dioxane binary solvent solutions. A nonlinear relationship was observed between the stability constants (log 10 K f) of these complexes with the composition of the AN–dioxane binary solvent. Values of thermodynamic parameters (DHc°, DSc°\Delta H_{\mathrm{c}}^{\circ}, \Delta S_{\mathrm{c}}^{\circ}) for complexation reactions were obtained from the temperature dependence of the stability constants. The results show that the values along with the sign of these parameters are influenced by the nature and composition of the mixed solvent.  相似文献   

9.
The Raman spectra of ClOF2 + cation in solutions of anhydrous HF were studied. In the ClOF2 +HF2 and ClOF2 +BF4 −HF systems, this cation exists as a pyramidal structure (C s symmetry), while in the ClOF2 +AuF6 −HF system, it exists as a planar structure (C 2v symmetry). Based on nonempirical calculations by the Hartree-Fock-Roothaan method, an explanation for the dependence of the structure of the ClOF2 + cation on the nature of the anion was proposed. For the Cl−O bond vibrations, the correlation functions of vibrational and rotational relaxations were calculated, and the characteristic times of these processes were determined. The main contribution to the formation of the band contours corresponding to the above-mentioned modes is made by the vibrational dephasing. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 3, pp. 432–437, March, 1998.  相似文献   

10.
The heat capacities of 2-benzoylpyridine were measured with an automated adiabatic calorimeter over the temperature range from 80 to 340 K. The melting point, molar enthalpy, ΔfusHm, and entropy, ΔfusSm, of fusion of this compound were determined to be 316.49±0.04 K, 20.91±0.03 kJ mol–1 and 66.07±0.05 J mol–1 K–1, respectively. The purity of the compound was calculated to be 99.60 mol% by using the fractional melting technique. The thermodynamic functions (HTH298.15) and (STS298.15) were calculated based on the heat capacity measurements in the temperature range of 80–340 K with an interval of 5 K. The thermal properties of the compound were further investigated by differential scanning calorimetry (DSC). From the DSC curve, the temperature corresponding to the maximum evaporation rate, the molar enthalpy and entropy of evaporation were determined to be 556.3±0.1 K, 51.3±0.2 kJ mol–1 and 92.2±0.4 J K–1 mol–1, respectively, under the experimental conditions.  相似文献   

11.
The geometries and peculiarities of the electronic structure of chiral 1,3-dialkyl-4,5-bis(3-guanidinioamino)imidazolidin-2-one dications (C 2 symmetry) and their associates in salts containing chloride and nitrate anions were studied by X-ray diffraction analysis and quantum chemistry methods. Homochiral H-bonded cation chains are stable supramolecular fragments; however, their presence in the crystal structures does not provide spontaneous resolution of racemates upon crystallization. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 387–395, March, 2006.  相似文献   

12.
A crystallographic analysis is performed for the structures of TlCu2S2, TlCu7S4, TlTaS3, TlIn3S5, TlIn5S8, and TlCr2V3S8. In them the Tl+ cation is included in anion sublattices and stabilizes their regularity. The cation sublattices are substantially distorted and have additional conjugation to the anionic positions of the thallium cations. The monoclinic structures (the last three) have geometrically similar anionic and cationic “forced skeletons,” while in tetragonal (the first two) and orthorhombic symmetries they are modified by symmetry restrictions.  相似文献   

13.
 The nature of the Maxwell–Cartesian spherical harmonics S (n) K and their relation to tesseral harmonics Y nm is examined with the help of “tricorn arrays” that display the components of a totally symmetric Cartesian tensor of any rank in a systematic way. The arrays show the symmetries of the Maxwell–Cartesian harmonic tensors with respect to permutation of axes, the traceless properties of the tensors, the linearly independent subsets, the nonorthogonal subsets, and the subsets whose linear combinations produce the tesseral harmonics. The two families of harmonics are related by their connection with the gradients of 1/r, and explicit formulas for the transformation coefficients are derived. The rotational transformation of S (n) K functions is described by a relatively simple Cartesian tensor method. The utility of the Maxwell–Cartesian harmonics in the theory of multipole potentials, where these functions originated in the work of Maxwell, is illustrated with some newer applications which employ a detracer exchange theorem and make use of the partial linear independence of the functions. The properties of atomic orbitals whose angular part is described by Maxwell–Cartesian harmonics are explored, including their angular momenta, adherence to an Uns?ld-type spherical symmetry relation, and potential for eliminating an angular momentum “contamination” problem in Cartesian Gaussian basis sets. Received: 9 July 2001 / Accepted: 7 September 2001 / Published online: 19 December 2001  相似文献   

14.
Crystal and molecular structure of a new homodrimanic compound (1S,2S,4aS, 8aS)-N-(N-allyldiaminomethanethione)-1-(2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalenyl) acetamide has been determined by X-ray diffraction analysis. The crystal is monoclinic, unit cell parameters are: a = 9.577(2) Å, b = 7.414(1) Å, c = 16.856(3) Å; β = 94.83(3)°, space group P21, Z = 2, of composition C20H35N3O2S. Two cyclohexan fragments have ordinary structure and chair-configuration typical of this compound class in homodrimanic skeleton. Ethanol molecule is located in the outer sphere. The withdrawal of carbon atoms from planar fragments of cyclohexan rings varies within the limits from 0.722(5) Å to − 0.634(5) Å. A dihedral angle between the mean-square planes of the latter equals 16.0(2)°, torsion angle (5)-(5)-(10)-(16) 171.0(1)° indicates their trans-joint. In the side non linear chain allyl group is connected to terminal nitrogen atom of thiosemicarbazide molecule. Intermolecular hydrogen bonds between carbonyl atom of acetamide fragment, ethanol molecule, and donor-acceptor groups of thiosemicarbazide moiety play the main part in crystal structure organization. Original Russian Text Copyright ? 2005 by E. P. Styngach, S. T. Malinovskii, L. P. Bets, L. A. Vlad, M. Gdanets, and F. Z. Makaev __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 4, pp.785–789, July–August, 2005.  相似文献   

15.
采用高温固相法制备了Sr_3Y(BO_3)_3:xTm~(3+),yDy~(3+)荧光粉,并通过XRD、SEM和荧光光谱仪对样品的物相、微观形貌、发光性能、能量传递机制和CIE色坐标进行了分析。结果表明:Sr_3Y(BO_3)_3:xTm~(3+)荧光粉在监测波长为359 nm时发射蓝光,Tm~(3+)的浓度淬灭点为x=0.08;在Sr_3Y(BO_3)_3:0.08Tm~(3+),yDy~(3+)荧光粉中,随着Dy~(3+)掺杂浓度的增加,Tm~(3+)的发光强度降低而Dy~(3+)发光强度却先增加后降低,Dy~(3+)的浓度淬灭点为y=0.1;通过改变Dy~(3+)掺杂浓度或改变激发光的波长,均可实现发射光的颜色可调;在Tm~(3+)-Dy~(3+)离子之间存在能量传递。当Dy~(3+)掺杂浓度(物质的量分数)为0.15时能量传递效率达75.14%,能量传递机制为电偶极-电偶极相互作用。  相似文献   

16.
The quantum yield of photodissociation of 9-(4-azidophenyl)acridine (1) is equal to 0.82, and that of its protonated form 2 is 6.9·10−3. The observed quantum yield of the system can smoothly be controlled in these limits varying the acidity of the medium. According to quantum chemical data, reactivity difference between neutral azide 1 and cation 2 is caused by the fact that in the lowest singlet-excited state (S1) of azide 1 the antibonding σ*NN molecular orbital is occupied, while this orbital remains unoccupied in the excited state of cation 2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2655–2660, December, 2005.  相似文献   

17.
The crystallographic analysis of Bi2S3, CuPbBi5S9, CuPbBi3S6, and CuPbBiS3 compounds, representing a series with a successive replacement of a part of Bi atoms by Pb+Cu, shows that they are characterized by a stable combination of a pseudotetragonal cation framework with a pseudohexagonal anion one, which is common for all structures, within orthorhombic unit cells with n sizes of 11.2 Å, 4 Å, and 11.5 Å. The Bi2S3 cation framework is retained for the heavy Bi+Pb, and additional light Cu fill the available vacant sites without changing its geometry but varying the crystallographic symmetry within the orthorhombic crystal symmetry and unit cells of n standard blocks (11.2×4×11.5 Å3).  相似文献   

18.
Reference values of the structural substituent parameters, S E and S R, measuring the electronegativity and resonance effects, respectively, of functional groups (Campanelli et al. J Phys Chem A 107:6429–6440, 2003) have been determined from the benzene ring geometries of 100 Ph–X species, including different conformations of the same molecule. Geometries have been obtained by quantum chemical calculations at the HF/6-31G*, HF/6-311++G**, and B3LYP/6-311++G** levels of theory. The substituent parameters from HF/6-311++G** calculations are in close agreement with those determined at the HF/6-31G* level. Using the B3LYP density functional yields S E and S R values which—in general—correlate well with the corresponding HF values. Exceptions occur with some charged groups, and, in the case of S E, with a few dipolar groups having very high or low electronegativities. S R values from B3LYP calculations are about 22% smaller than the corresponding HF values. The variations of the benzene ring geometry caused by electronegativity, resonance, and steric effects are illustrated in some detail.  相似文献   

19.
The electronic structure of some amino-N-sulfenyl chlorides and related compounds is studied by photoelectron spectroscopy and ab initio calculations. Similar values of IP(n S ) and IP(n N ) and the total energy minimum indicate that in stable conformations the n S and n N orbitals are orthogonal. These conformers are characterized by an effective nNS-Cl * interaction. The relationship between the intramolecular shift of charge and ionization potential values and the spatial structure of amino-N-sulfenyl chlorides is analyzed. A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 35, No. 2, pp. 69–73, March–April, 1994. Translated by L. Smolina  相似文献   

20.
Mercury-mercury (II) sulphide electrode has been prepared and its electrochemical and thermodynamic behaviour has been studied in different media. The electrode is found to show Nernstian response to pS (− log [S2−]) over the range 5.19–10.38. In the pH range 7.96–11.98, at constant [S2−]v, its response is also Nernstian. The values of thermodynamic functions, viz., ΔG0. ΔH0, and ΔS0 for the electrode reaction: Hg(3)+S2− ⇌HgS(s)+2e, have been determined. Further, the standard free energy of formation (ΔG f 0 ) and solubility product constant (K vp ) of HgS in aqueous medium at 25±0.1°C have also been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号