首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
甲烷水合物(CH4·nH2O)是主要由甲烷和水分子构成的冰状笼型化合物,在自然界储量巨大.固体核磁共振(NMR)波谱和激光拉曼光谱是在分子水平分析甲烷水合物的重要手段.该文利用低温固体核磁共振碳谱(13C NMR)对合成的甲烷水合物结构进行了研究,分别使用13C交叉极化(13C CP)和高功率质子去偶(1H HPDEC)2种脉冲程序采集甲烷水合物的13C NMR谱图,结合实验结果分析及理论推导可知,使用1H HPDEC方法得到的13C NMR谱图信号更强,更利于定量分析;甲烷气体与冰粉合成的甲烷水合物为I型,其大笼和小笼占有率分别为0.988和0.824,水合数为6.07;甲烷气体与SH2站位沉积物和冰粉合成的甲烷水合物也为I型,其大笼和小笼占有率分别为0.987和0.887,水合数为5.98;SH2站位沉积物使合成的甲烷水合物的小笼占有率提高、水合数降低、水合物饱和度提高.激光拉曼光谱结果证实了上述结果的准确性.该文为甲烷水合物测试提供了重要的方法参考.  相似文献   

2.
抽采瓦斯气分离产物特性精确获取是水合分离新技术应用关键。针对两种浓度构成的瓦斯混合气(CO2—CH4—N2),利用瓦斯水合分离产物Raman测试装置,原位合成两种水合物样品并观测Raman光谱。基于客体分子振动模式、"松笼-紧笼"模型及Raman谱带面积比,结合van der Waals-Platteeuw模型,确定出水合物晶体结构,计算出晶体孔穴占有率、水合指数等结构参数。结果表明,两种瓦斯水合物样品均为Ⅰ型结构,其大孔穴占有率分别为98.57%和98.52%,小孔穴占有率分别为29.93%和33.87%,小孔穴不易被客体分子填充;两种分离产物水合指数比较接近,分别为7.14和6.98,均大于Ⅰ型水合物水合指数理论值。  相似文献   

3.
瓦斯水合物微观晶体结构研究对水合分离技术具有重要理论意义。利用Raman光谱技术对三种含高浓度CO2瓦斯混合气水合反应过程进行在线观测,并对水合物相Raman光谱图进行分析,获取了瓦斯水合物不同生长阶段大、小孔穴占有率,同时利用van der Waals与Platteeuw热力学统计模型间接获得水合指数等晶体结构信息。结果表明,瓦斯水合物孔穴占有率及水合指数在水合物不同生长阶段未发生较大变化,水合物相中大孔穴几乎被客体分子填满,CO2与CH4分子共同占据大孔穴,但CO2占绝大多数,达到78.58%~94.09%,CH4分子仅为4.52%~19.12%,这主要是由于两种分子间存在竞争关系且气样中CO2浓度明显高于CH4,大孔穴占有率维持在97.70%~98.68%;小孔穴占有率为17.93%~82.41%,占有率普遍偏低,且仅有CH4分子;随气样中CH4浓度增加,CH4在大、小孔穴中的占有率均有所增加,且CH4分子在大孔穴中的占有率均明显低于在小孔穴中占有率;水合物生长不同阶段水合指数为6.13~7.33,随气样中CH4浓度的增加,小孔穴占有率有所增加,致使水合指数随之降低;由于瓦斯水合物生长分布不均匀,三种气样对应的不同生长阶段水合指数均呈不规则变化。  相似文献   

4.
在本工作中,甲烷水合物的生长动力学是通过甲醇、乙醇、乙二醇三种不同醇类抑制剂存在下的分子动力学模拟研究的.模拟结果发现,三种醇类都可作为甲烷水合物的抑制剂,醇类分子中的亲水性羟基极大地破坏了水合物笼的结构,并且羟基可以与局部的液态水分子形成氢键,从而增加了形成水合物笼型结构的难度,导致甲烷水合物的生长速率降低.对于甲醇分子,甲醇分子的亲水性羟基与水分子形成氢键从而破坏了水分子结构,而亲油性甲基对周围的水分子具有簇效应,两者都会降低水合物生长速率;对于乙二醇和乙醇分子,它们只含有羟基,特别是乙二醇分子含有两个羟基,其对H2O分子有很强的吸附作用,导致水合物生长速率降低.在抑制效果方面,甲醇分子最优,乙二醇稍微优于乙醇.  相似文献   

5.
用分子动力学模拟甲烷水合物热激法分解   总被引:3,自引:0,他引:3       下载免费PDF全文
用分子动力学模拟方法研究甲烷水合物热激法分解,系统地研究注入340 K液态水的结构Ⅰ型甲烷水合物的分解机理.模拟显示水合物表层水分子与高温液态水分子接触获得热能,分子运动激烈,摆脱水分子间的氢键束缚,笼状结构被破坏.甲烷分子获得热能从笼中挣脱,向外体系扩散.热能通过分子碰撞从外层传递给内层水分子,水合物逐层分解.对比注入277K液态水体系模拟结果,得出热激法促进水合物分解. 关键词: 甲烷水合物 分子动力学模拟 热激法  相似文献   

6.
四丁基铵盐生成的半笼型水合物以其独有的高稳定性、不易挥发性等优点,成为一种有吸引力的水合物法工业应用的新方法。实验制备了不同浓度的四丁基溴化铵和四丁基氯化铵溶液中生成的半笼型甲烷水合物样品,并使用激光拉曼光谱仪进行了光谱实验和结构分析。结果表明,半笼型水合物中的512小笼可以将CH_4分子包络其中;且当添加剂浓度较低时,CH_4分子对半笼型结构产生HS结构诱导作用,当添加剂浓度较高时,添加剂对半笼型结构的影响占主导作用。  相似文献   

7.
天然气水合物是蕴含着巨大能源潜力的非常规能源,2017年和2020年两次我国南海探索性试采的成功,加快了天然气水合物项目的进展。二氧化碳置换开采法,既能开发CH4,又能封存CO2。同时水合物法分离烟气中CO2具有很好的应用前景,而CO2在气体水合物的微观结构和特性尚不明确,实际应用存在一定的未知影响。为了考察其特性,利用13C固体核磁技术(NMR)和拉曼光谱(Raman)进行CO2置换CH4水合物、合成13CO2-H2-CP混合水合物实验表征,讨论CO2在水合物中的定量问题,研究CO2分子在笼型结构中的分布,探讨CO2分子在气体水合物中的结构类型和特性。结果表明:(1)利用Raman费米低频共振1 277.5 cm-1峰积分得到CO2在I型大笼(51262笼)的占有率为0.978 2,CH4在Ⅰ型小笼(512笼)和大笼(51262笼)的占有率为0.059 3和0.009 5,水合数7.61,Raman费米高频共振1 381.3 m-1峰积分得到CO2在51262笼的占有率为0.984 3,CH4在512笼和51262笼的占有率为0.023 7和0.003 3,水合数7.70,CO2几乎占满了大笼,CO2气体的加入会导致水合物中,CH4的大、小笼占有率均大幅度降低,置换后水合数略低于纯甲烷水合物,未标记的CO2水合物在核磁中较难测出信号,CO2气体置换后CH4在小笼的占有率仅0.097 5,大笼占有率为0.317 2,两种方法差异主要原因为核磁的CO2未出峰。(2)利用拉曼费米低频共振1 273.4 cm-1峰积分得到H2、CO2在512笼、CP在51262的占有率分别为0.124 8,0.304 2和0.997 8,水合数9.16;Raman费米高频共振1 380.6 cm-1峰积分得到H2、CO2在512笼、CP在51262的占有率分别为0.123 6,0.577 1和0.985 1,水合数7.12。13C标记CO2分子在水合物中达到较好的固体核磁分辨率,首次确认CO2在Ⅱ型小笼中的化学位移为124.8 ppm,计算得到CO2的小笼占有率为0.783 1,CP的大笼占有率为0.971 8,水合数6.70,Raman高频频费米共振峰(1 380.6 cm-1)定量计算与13C NMR结果更接近。(3)对CO2的13C NMR化学位移进行了归属,并结合Raman与13C NMR的对比分析,为CO2水合物的13C NMR研究和拉曼定量提供参考。  相似文献   

8.
本文基于第一性原理计算,对三种不同结构的Ⅰ型甲烷水合物进行弛豫,得到优化后的结构、电子态密度及光学性质,通过对结果的分析揭示不同笼子占据率对水合物的结构和相关性质的影响。这三种结构分别为:(cI)只有一个大笼未被占据;(cII)只有一个小笼未被占据;(cIII)每个笼子都被甲烷分子占据。结果显示,cIII是最稳定的,因为它有完美的晶体结构;cII和cI相对较不稳定,其中cI在缺失一个甲烷分子的情况下,结构出现了较大的变形,这导致它成为三种情况中最不稳定的结构;相反,同样缺失了一个甲烷分子的cII的结构变形就很小。cII和cI的体积变化分别是0.56%和2.1%,cII的电子态密度和能带几乎与cIII的一致,而cI的则与前两者差别很大。计算结果表明,相对于电子转移,质子无序对水合物的介电常数的影响更为主要;甲烷水合物只对紫外光有响应,无论结构和占据率差异如何,甲烷水合物都具有相近的光学性质。本文的结果证明,缺失一个甲烷分子,对cII造成的影响很小,其晶体结构、介电常数和光学性质与cIII的一致,然而同样缺失一个甲烷分子的cI的结构及性质却出现了巨大变化。这些结果可为水合物探测提供有价值的参考。  相似文献   

9.
甲烷水合物在化学、能源和环境科学等领域中都具有重要作用. 本文采用普适的基于能量的分块(GEBF)方法计算了多种甲烷水合簇的结合能和拉曼光谱. 首先使用这些甲烷水合簇的在显相关耦合簇[CCSD(T)(F12*)]水平下得到的GEBF结合能,评估了一系列密度泛函计算的结果. 计算结果表明B3PW91-D3和B97D泛函表现最佳,与GEBF-CCSD(T)(F12*)基准相比的平均绝对误差分别仅为0.27和0.47 kcal/mol. 然后用GEBF-B3PW91-D3方法计算得到了单、双笼甲烷水合簇的结构和拉曼光谱,得到的甲烷C-H键伸缩拉曼振动峰与实验值的偏差小于3 cm-1,说明B3PW91-D3泛函可以很好地重现实验结果. 随着水笼尺寸的增加. 甲烷C-H键伸缩拉曼峰发生红移,该现象与实验中提出的“松笼-紧笼”模型吻合. 此外,甲烷分子邻近环境(水笼)的改变对拉曼光谱的影响很小,环境从单笼变为双笼导致C-H键伸缩拉曼振动峰的蓝移不超过3 cm-1. 甲烷水合簇的理论拉曼光谱与实验拉曼光谱结合可以用来研究海底或星际冰体内部的甲烷水合物的结构. 结合B3PW91-D3或B97D泛函和机器学习模型,可以进一步应用分子动力学模拟研究甲烷水合物的成核/生长机制和相变过程.  相似文献   

10.
本文采用平衡态分子动力学方法研究了多种Ⅰ型甲烷水合物结构在高压下的导热性能。结果显示各水合物结构中水分子的排布构型差别不大,但各水合物结构的热导率存在一定差异。其中空穴水合物结构具有较好的导热性能,而含水分子晶格缺陷水合物结构的热导率较低。高压可以促进水合物中的声子传热,高温也能促进甲烷分子平动相关声子的传热,但将削弱水分子运动相关声子的传热。此外水合物结构中的水分子晶格缺陷会导致传热过程中声子大量散射。  相似文献   

11.
在253 K和16 MPa的压力下,于实验室内合成了氮气水合物,用显微共焦拉曼光谱对其N-N和O-H键伸缩振动的光谱特征进行了研究.结果表明,氮气水合物中的N-N和O-H键的拉曼峰分别为2322.4和3092.1 cm-1,与天然的空气水合物中的数据十分接近.另外,还测定了液氮和溶解于水中的氮分子中N-N键的拉曼峰值,分别为2326.6和2325.0 cm-1.氮气笼型水合物分解的拉曼谱图表明,氮分子同时进入水合物的大笼和小笼中,但由于氮分子在大、小笼中的环境氛围十分接近,其拉曼位移相差不大,故拉曼谱图只能显示N-N键伸缩振动一个峰.  相似文献   

12.
The region of existence of neon clathrate hydrates is an actual problem of hydrate chemistry. The current work presents theoretical study of the equilibrium formation conditions of pure neon clathrate hydrates and double clathrate hydrates of neon-methane mixture. The structures and properties of double clathrate hydrates were described within the scope of the previously developed molecular clathrate hydrate model that takes into account the influence of guest molecules on the host lattice, interaction of guest molecules between themselves, and the possibility of multiple filling of host lattice cages by guest molecules. The model makes it possible to find an equilibrium state and thermodynamic properties of clathrate hydrates at given values of p and T. In the present work, we considered the properties of double clathrate hydrates in the range of pressures from 0 to 4 kbar at 250 K. The results of modeling have shown that the mass fraction of neon in double clathrate hydrate of Ne and CH4 mixture of cubic structure I (sI) can reach 26%, and 22.5% in double hydrate of cubic structure II (sII) even at a low methane concentration (1%) in gas phase, at high pressure. It is shown that in double clathrate hydrates of the Ne and CH4 mixture at high pressures, phase transition sII-sI can occur.  相似文献   

13.
采用显微激光拉曼光谱技术对高压透明毛细管中甲烷水合物的生成与分解的微观过程进行了原位观测,初步探讨了甲烷水合物笼型结构的变化规律.结果表明,甲烷水合物在生成过程中,甲烷分子的拉曼峰(2 917 cm-1)逐渐分裂为两个峰(2 905和2 915 cm-1),表明溶解态甲烷分子从单一的化学环境进入了两个有差异的化学环境中...  相似文献   

14.
近年来,笼型水合物储氢已成为储氢研究的热点之一。采用激光拉曼光谱开展了以氮气水合物为载体的储氢实验研究。在较为温和的条件下(15 MPa, -18 ℃),使合成的氮气水合物与氢气发生反应,对反应产物的拉曼光谱分析结果显示,氢气分子进入到水合物的笼型结构中,并且呈现出多分子的笼占有状态;氮气水合物与氢气的反应时间是影响储氢效果的重要因素。研究结果表明,氮气水合物有希望成为一种有效的储氢介质。  相似文献   

15.
瓦斯浓度影响下水合物晶体结构Raman光谱特征   总被引:1,自引:0,他引:1  
在初始温压2 ℃,5 MPa条件下开展了三种瓦斯混合气(CH4—C2H6—N2,G1=54∶36∶10,G2=67.5∶22.5∶10,G3=81∶9∶10)水合实验,利用可见显微拉曼光谱仪获取水合产物拉曼光谱,通过水合物相中C2H6 C—C键伸缩振动特征峰拉曼位移判断水合物晶体结构,利用谱图特征峰分峰拟合方法计算出瓦斯水合物孔穴占有率、水合指数等。研究发现:气样G1和G2水合产物为I型水合物、G3为Ⅱ型,气样中C2H6浓度改变导致水合物晶体结构转变;Ⅰ型结构水合物相中CH4和C2H6含量受气样浓度影响较小,G1和G2体系中CH4含量分别为34.4%和35.7%、C2H6含量分别为64.6%和63.9%,而G3体系中CH4和C2H6含量分别为73.5%和22.8%,晶体结构对水合物相客体分子含量控制作用明显;G1~G3体系水合物相大孔穴的CH4—C2H6占有率分别为98%,98%和92%,小孔穴的CH4占有率分别为80%,60%和84%,N2由于分压较低且吸附能力较弱其小孔穴占有率不高于5%。  相似文献   

16.
朱金龙  赵予生  靳常青 《物理学报》2019,68(1):18203-018203
天然气水合物是与能源和环境相关的物质,可以进行甲烷等能源气体的存储和提取,也可以用于对二氧化碳等废气的封存.天然气水合物主要分为三种结构:sI, sII和sH,在本文中对其稳定性、水笼类型和大小以及可俘获气体进行了论述.中子衍射技术是研究水合物的重要手段之一,有着独特的优势.如中子的穿透性可以研究在高压状态下压力腔体内的大块样品;中子对于轻元素的敏感性可以很好地确定水合物当中的碳、氢、氧元素.通过中子衍射和非弹散射可以得到水合物中H/D原子的位置、各向异性振动因子、不同温度压力下的客体分子的水笼占据率、客体分子在水笼中的无序分布、原子核密度分布(通过最大熵方法);通过时间分辨中子,可以检测水合物形成及分解过程的热力学和动力学过程.而利用非弹中子可以得到气体分子平移和旋转振动模式以及分子的量子态转变.通过二氧化碳气体注入对天然气水合物的开采可以实现能源气体甲烷的开采和废气二氧化碳的水合物封存,在减小地质灾害和开采成本上有着独特的优势.  相似文献   

17.
The D2 clathrate hydrate crystal structure was determined as a function of temperature and pressure by neutron diffraction for the first time. The hydrogen occupancy in the (32+X)H2.136H(2)O, x=0-16 clathrate can be reversibly varied by changing the large (hexakaidecahedral) cage occupancy between two and four molecules, while remaining single occupancy of the small (dodecahedral) cage. Above 130-160 K, the guest D2 molecules were found in the delocalized state, rotating around the centers of the cages. Decrease of temperature results in rotation freezing followed by a complete localization below 50 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号