首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
《Chemical physics》1987,111(2):249-261
Ab initio multi-reference CI calculations have been performed on pyrrole, pyrazole, imidazole, each of the triazoles and tetrazole. The tautomerism of these species is discussed, and the UV photoelectron spectra are reinterpreted in the light of the CI data. Many shake-up states are evident above ≈ 14 eV; these can cause difficulties in the positioning of LPN states by CI methods.  相似文献   

2.
An equation been derived to calculate, ab initio, the frequencies and intensities of a resonant Raman spectrum from the transform theory of resonance Raman scattering. This equation has been used to calculate the intensities of the ultraviolet resonance Raman spectra from the first π-π* excited state of uracil and 1,3-dideuterouracil. The protocol for this calculation is as follows: (1) The force constant matrix elements in Cartesian coordinate space, the vibrational frequencies, and the minimum energy ground and excited state geometries of the molecule are calculated ab initio using the molecular orbital program Gaussian 92, (2) the force constants in Cartesian coordinates are transformed into force constants in the space of a set of 3N – 6 nonredundant symmetrized internal coordinates, (3) the G matrix is constructed from the energy minimized ground state Cartesian coordinates and the GFL = LΛ eigenvalue equation is solved in internal coordinate space, (4) the elements of the L and L?1 matrices are calculated, (5) the changes in all of the internal coordinates in going from the ground to the excited state are calculated, and (6) these results are used in combination with the transform theory of resonance Raman scattering to calculate the relative intensities of each of the 3N – 6 vibrations as a function of the exciting laser frequency. There are no adjustable parameters in this calculation, which reproduces the experimental frequencies and intensities with remarkable fidelity. This indicates that the Dushinsky rotation of the modes in the excited state of these molecules is not important and that the simplest form of the transform theory is adequate. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The photoelectron spectrum of formaldoximie, CH2NOH, has been re-investigated with higher resolution and interpreted by, means of ab initio SCF Cl calculations. Calculations have confirmed that the states increase in energy as π1 < n1 < π2 < n2 and have shown the existence of a shake-up peak at ≈15 eV. The calculation of Franck-Condon factors allowed the interpretation of the observed vibrational structure.  相似文献   

4.
We employ recent flexible ab initio potential energy and dipole surfaces [Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 094509 (2011)] to the calculation of IR spectra of the intramolecular modes of water clusters. We use a quantum approach that begins with a partitioned normal-mode analysis of perturbed monomers, and then obtains solutions of the corresponding Schro?dinger equations for the fully coupled intramolecular modes of each perturbed monomer. For water clusters, these modes are the two stretches and the bend. This approach is tested against benchmark calculations for the water dimer and trimer and then applied to the water clusters (H(2)O)(n) for n = 6-10 and n = 20. Comparisons of the spectra are made with previous ab initio harmonic and empirical potential calculations and available experiments.  相似文献   

5.
A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.  相似文献   

6.
Clusters of boron nitride BxNx (x = 1–4, 12, 15, 30) were investigated by the Hartree-Fock and density functional methods using the 6-31G* basis. It was found that linear, cyclic, and shell structures are stable against minor deformations of the BxNx cluster. Inclusion of electron correlation in calculation markedly changes the electron density distribution and the structure of the clusters.  相似文献   

7.
The effects of the basis-set size on many-body energy expansion in LiF? clusters are investigated and correlated with previously reported values on LiCl? analogs. Coulomb and non-Coulomb energies in LiF? at different configurations are also examined. Although at the minimal STO -3G basis Vna(3, 4) and Vna(4, 4) nonadditivity terms were the smallest in the D3h configuration, they were the largest at the extended 6-311 ++G basis. V(m, n) terms where m = n ≥ 3 were found to be playing a small role in the chemistry and physics of LiF? clusters compared with V(3, n) terms in LiCl? clusters.  相似文献   

8.
Ab initio calculations have been performed on benzooxirene, the corresponding oxo carbene (“ketocarbene”), and the transition state linking the two. At the highest level used, QCISD(T)/6-31G*//MP2(FULL)/6-1G* with MP2(FULL)/ 6-31G* zero point energy corrections, the relative energies of the oxirene, the transition state and the carbene are 0, 24.6, and −17.8 kJ mol−1. Correlation energy effects are very important in this system: at the QCISD(T) level the oxirene lies above the carbene, as at the MP4 and HF levels, but at the MP2 level the ordering is reversed. Benzooxirene is probably slightly nonplanar: the HF/6-31G* geometry is C2v but the MP2(Fermi contact)/6-31G* geometry is Cs with a 6-/3-ring coplanarity deviation of about 6.9 °, although in the MP2(FULL)/6-31G* geometry this is reduced to about 3.1 °.  相似文献   

9.
A series of non-empirical calculations on furan, pyrrole and 1,2,5-oxadiazole are reported in which the effect of polarisation functions added to the minimal 7s 3p basis on each atom is studied. The effect on these planar molecules is largely through the rather than the-system. A comparison with the results of work with scaled functions is reported. Both series are shown to lead to much improved agreement with the electron spectroscopy energy levels. The effect on the dipole moments of these changes in basis is more variable but, with the exception of furan, the agreement with experiment is improved in the present method.
Zusammenfassung Für die Moleküle Furan, Pyrrol und 1,2,5-Oxadiazol wurde eine Reihe von nichtempirischen Rechnungen durchgeführt, in denen der Einfluß von zusätzlichen Polarisationsfunktionen zur minimalen 7s 3p-Basis an jedem Atom untersucht wird. Die Ergebnisse werden mehr durch die Art der Beschreibung des Systems der-Elektronen als durch diejenige der-Elektronen beeinflußt. Ein Vergleich mit den Ergebnissen bei Verwendung skalierter Funktionen wird durchgeführt. Beide Reihen von Ergebnissen zeigen eine verbesserte Übereinstimmung zu den Energiemeßwerten der Elektronenspektroskopie. Die Änderungen des berechneten Dipolmoments bei derartigen Basisvariationen sind größer als bei früheren Methoden. Die Übereinstimmung mit dem Experiment wird, mit Ausnahme von Furan, jedoch verbessert.
  相似文献   

10.
Ab initio molecular orbital calculations on fluoro- and chloro-methanes, CH4—nXn, predict the correct trends in the photoelectron spectra except in the case of the C(2s) bands of fluoromethanes. Thus, the calculated energies corresponding to the lone pair, σ (CX) and C(1s) bands increase with increasing n as found experimentally; the C(2s) energy in chloromethanes decreases with increasing n, again, in agreement with experiment.  相似文献   

11.
Multiconfiguration wave functions constructed from contracted Gaussian-lobe functions have been found for the ground and valence-excited states of urea. ICSCF molecular orbitals of the excited states were used as the parent configurations for the CI calculations except for the 1A1(π → π*) state. The 1A1(π → π*) state used as its parent configuration an orthogonal linear combination of natural orbitals obtained from the second root of a three-configuration SCF calculation. The lowest excited states are predicted to be the n π → π* and π → π* triplet states. The lowest singlet state is predicted to be the n π → π* state with an energy in good agreement with the one known UV band at 7.2 eV. The π → π* singlet state is predicted to be about 1.9 eV higher, contrary to several previous assignments which assumed the lowest band was a π → π* amide resonance band. The predicted ionization energy of 9.0 eV makes this and higher states autoionizing.  相似文献   

12.
Geometry, vibrational frequencies, atomic charges and several thermodynamic parameters (the total energy, the zero point energy, the rotational constants and the room temperature entropy) were calculated using ab initio quantum chemical methods for 2,3-difluorobenzonitrile molecule. The results were compared with experimental values. With the help of two specific scaling procedures, observed FTIR and Raman vibrational frequencies were analysed and assigned to different normal modes of the molecule. The error obtained was in general very low. Other general conclusions have also been deduced.  相似文献   

13.
Ab initio SCF calculations are reported for the porphin molecule. The positions of the central protons have been optimized, and the equilibrium geometry is found to be a linear NH ? HN arrangement. The NH vibrational frequencies have been computed and are compared to experimentally measured quantities. Several low ionized states have also been studied in separate spin-restricted SCF calculations. The lowest state is found to have B1u symmetry with an ionization potential of 8.0 eV.  相似文献   

14.
15.
Extensive ab initio molecular-orbital calculations were carried out on trifluoromethylamine (TFM) to elucidate changes in geometry and electronic structure upon fluorination. The calculations show that the decomposition of CF3NH2 is slightly endoenergetic, and the heats of atomization of CF3NH2 and CH3NH2 show decreased stability of the species upon fluorination. Characteristic of CF3NH2 is a highly polar, strong, short CN bond. More limited calculations were carried out on CF3OH and CH3OH, and the electronic structure of CF3OH is found to be generally similar to that of CF3NH2. The reduced basicity of the fluorinated amine cannot be ascribed to the inductive effect; the enhanced acidity of the fluorinated alcohol reflects the weakening of the OH bond. No evidence leads to a confirmation of the existence of nitrogen–fluorine hyperconjugation in the fluorinated amine.  相似文献   

16.
17.
The structures, energetics, vibrational frequencies and IR intensities of the H3N HF, H3N F2 and NH2FHF (three isomers) complexes were examined using the self-consistent field method within the 6-311G** basis set. The interaction energies were calculated using the MP2 approach. The results are compared with monomer calculations and experimental data. The complex NH2FHF was found to exist in three forms: one with the HF molecule hydrogen bonded to the nitrogen lone pair of NH2F (D0 =7.403 kcal mol−1), another a complex formed through the F atom lone pair (D0=4.698 kcal mol−1) and third a cyclic structure (D0=5.644 kcal mol−1).  相似文献   

18.
硫代甲酰胺双聚体的量子化学计算   总被引:1,自引:0,他引:1  
在MP2/6 31G(d)和MP2(FC)/6 311 G(d,p)水平上,对硫代甲酰胺(HC-SNH2)及其3种构型双聚体进行几何全优化计算,经振动频率分析,确认为势能超曲面上的稳定驻点.然后在MP2/6 311 G(2df,2p)水平上进行单点能计算和基组重叠误差(BSSE)校正以获得相互作用能.并利用自然键轨道(NBO)理论和分子中的原子(AIM)理论探讨HCSNH2之间相互作用的本质.  相似文献   

19.
Motivated by the recent experiments of the Swedish group [M. Tchaplyguine, R. R. Marinho, M. Gisselbrecht et al., J. Chem. Phys. 120, 345 (2004)], we simulate the photoelectron spectra of pure xenon and argon clusters. The clusters are modeled using molecular dynamics with Hartree-Fock-dispersion type pair potentials while the spectrum is calculated as the sum of final state energy shifts of the atoms ionized within the cluster relative to the isolated gas phase ion. A self-consistent polarization formalism is used. Since signal electrons must travel through the cluster to reach the detector, we have accounted for the attenuation of the signal intensity by integrating an exponentially decaying scattering expression over the geometry of the cluster. Several different approaches to determining the required electron mean free paths (as a function of electron kinetic energy) are considered. Our simulated spectra are compared to the experimental results.  相似文献   

20.
The equilibrium geometrical structures of small AlmFen clusters have been determined through ab initio calculation of the cluster total energy at the UB3LYP/Lanl2dz level. For dimers of iron and aluminum, the dissociation energies, the equilibrium atomic distances, and the vibrational frequencies were calculated. The agreement between calculations and experiments is reasonable. The ground stable geometrical structures of Fe4, FeAl3, Fe3Al and Fe2Al2 clusters favor three-dimension configurations, but Al4 tetramers are planar structures. The Al-rich tetramers are more stable than the other two composition tetramers. This is different from that of bulk alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号