首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A topologically extended model of a chemically cross-linked hydrogel of poly(vinyl alcohol) (PVA) at high hydration degree has been developed for a molecular dynamics simulation with atomic detail at 323 K. The analysis of the 5 ns trajectory discloses structural and dynamic aspects of polymer solvation and elucidates the water hydrogen bonding and diffusion in the network. The features of local polymer dynamics indicate that PVA mobility is not affected by structural constraints of chemical junctions at the investigated cross-linking density, with a prevailing dumping effect due to water interaction. Simulation results are validated by a favorable comparison with findings of an incoherent quasi-elastic neutron scattering study of the same hydrogel system.  相似文献   

2.
The mobility of the components of a mixture of high-molecular-weight polyvinylpyrrolidone and poly(ethylene glycol) containing 36 vol % of PEG with a molecular mass of 400 and about 1 wt % of water was studied by the broad-line 1H NMR technique at mixture storage times of 4, 8, and 12 months. It was shown that, during the mixture storage, the relaxation times of water decrease to the values indicating the loss of translational mobility, which is associated with the rearrangement of polymer network and an increase in the strength of hydrogen bonds in water. The molecular mobility of polymer network is exhibited at room temperature and disappears at 80 K. The water strongly bound by the system is incorporated into the forming crosslinked structure.  相似文献   

3.
Atomistic detailed hydration structures of poly(vinyl methyl ether)(PVME) have been investigated by molecular dynamics simulations under 300 K at various concentrations. Both radial distribution functions and the distance distributions between donors and acceptors in hydrogen bonds show that the hydrogen bonds between the polymer and water are shorter by 0.005 nm than those between water molecules. The Quasi-hydrogen bonds take only 7.2% of the van der Waals interaction pairs. It was found the hydrogen bonds are not evenly distributed along the polymer chain,and there still exists a significant amount(10%) of ether oxygen atoms that are not hydrogen bonded to water at a concentration as low as 3.3%. This shows that in polymer solutions close contacts occur not only between polymer chains but also between chain segments within the polymer,which leads to inefficient contacts between ether oxygen atoms and water molecules. Variation of the quasi-hydrogen bonds with the concentration is similar to that of hydrogen bonds,but the ratio of the repeat units forming quasi-hydrogen bonds to those forming hydrogen bonds approaches 0.2. A transition was found in the demixing enthalpy at around 30% measured by dynamic testing differential scanning calorimetry(DTDSC) for aqueous solutions of a mono-dispersed low molecular weight PVME,which can be related to the transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27%. The transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27% can be used to explain the demixing enthalpy transition at 30% at a molecular scale. In addition,at the concentration of 86%,each ether oxygen atom bonded with water is assigned 1.56 water molecules on average,and 'free' water molecules emerge at the concentration of around 54%.  相似文献   

4.
Hydrogel adhesives are attractive for applications in intelligent soft materials and tissue engineering, but conventional hydrogels usually have poor adhesion. In this study, we designed a strategy to synthesize a novel adhesive with a thin hydrogel adhesive layer integrated on a tough substrate hydrogel. The adhesive layer with positive charges of ammonium groups on the polymer backbones strongly bonds to a wide range of nonporous materials’ surfaces. The substrate layer with a dual hydrogen bond system consists of (i) weak hydrogen bonds between N,N-dimethyl acrylamide (DMAA) and acrylic acid (AAc) units and (ii) strong multiple hydrogen bonds between 2-ureido-4[1H]-pyrimidinone (UPy) units. The dual hydrogen-bond network endowed the hydrogel adhesives with unique mechanical properties, e.g., toughness, highly stretchability, and insensitivity to notches. The hydrogel adhesion to four types of materials like glass, 316L stainless steel, aluminum, Al2O3 ceramic, and two biological tissues including pig skin and pig kidney was investigated. The hydrogel bonds strongly to dry solid surfaces and wet tissue, which is promising for biomedical applications.  相似文献   

5.
Nanostructured hydrogels based on "smart" polymer conjugates of poloxamers and protein molecules were developed in order to form stimulus-responsive materials with bioactive properties for 3-D cell culture. Functionalized Pluronic F127 was covalently attached to a fibrinopeptide backbone and cross-linked into a structurally versatile and mechanically stable polymer network endowed with bioactivity and temperature-responsive structural features. Small angle X-ray scattering and transmission electron microscopy combined with rheology were used to characterize the structural and mechanical features of this biosynthetic conjugate, both in solution and in hydrogel form. The temperature at which the chemical cross-linking of F127-fibrinopeptide conjugates was initiated had a profound influence on the mechanical properties of the thermo-responsive hydrogel. The analysis of the scattering data revealed modification in the structure of the protein backbone resulting from increases in ambient temperature, whereas the structure of the polymer was not affected by ambient temperature. The hydrogel cross-linking temperature also had a major influence on the modulus of the hydrogel, which was rationally correlated to the molecular structure of the polymer network. The hydrogel structure exhibited a small mesh size when cross-linked at low temperatures and a larger mesh size when cross-linked at higher temperatures. The mesh size was nicely correlated to the mechanical properties of the hydrogels at the respective cross-linking temperatures. The schematic charts that model this material's behavior help to illustrate the relationship that exists between the molecular structure, the cross-linking temperature, and the temperature-responsive features for this class of protein-polymer conjugates. The precise control over structural and mechanical properties that can be achieved with this bioactive hydrogel material is essential in designing a tissue-engineering scaffold for clinical applications.  相似文献   

6.
A new molecular thermodynamic model for describing the swelling behavior of thermo-sensitive hydrogels was developed. The model consists of two terms. One is the contribution of the mixing of hydrogel network and water, which is dependent on the local polymer concentration and the interaction between polymer segment and solvent. A closed packed lattice model for polymer solution developed by Yang et al. was adopted for this term. The other is the elastic contribution derived from the network elasticity, which is dependent on the cross-linking degree of gel network. The elastic Gibbs energy model based on the Gaussian chain model developed by Flory was adopted. The model equation has two parameters. One is an energy parameter ? reflecting the interaction between water and gel network, the other is a size parameter V* that represents the cross-linking degree of the hydrogel. When the energy parameter ? is expressed as a quadratic of inverse temperature, this model can describe the swelling equilibrium behavior of neutral thermo-sensitive hydrogels quite well. The influences of model parameters were discussed in details. The experimental swelling curves of two kinds of polyacrylamide-based gels were correlated and good agreement was obtained.  相似文献   

7.
Glycohydrogels containing 2′‐acrylamidoethyl‐β‐d ‐galactopyranoside and varying levels of N,N′ methylene bisacrylamide and 3‐acrylamidopropyltris(trimethylsiloxy)silane were synthesized to determine the effects of crosslinker and amphipathic balance on equilibrium water content (EWC), bound water population, and hydrogen bonding dynamics at the water–polymer interface. Analogous dimethylacrylamide hydrogels were synthesized for comparison with a system containing lower hydrogen bonding propensity. An approach combining experiment (proton nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, and dynamic vapor sorption analysis) and molecular dynamics simulations was employed to examine the relationship between bulk hydrogel properties, molecular water mobility, and hydrogen bonding characteristics. It was found that copolymer composition (hydrophobic content) and crosslink concentration in high water content glycohydrogels affect EWC, and by extension, structural water population. The organization of water at the polymer interface is greatly impacted by the surrounding environment, where hindered molecular water mobility promotes water–polymer binding and decreases water–water clustering. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 584–597  相似文献   

8.
Poly(acrylic acid-co-N-vinylcaprolactam) (PAN) hydrogels containing multiple hydrogen bonds can exhibit pH-induced reversible dynamic responsive behaviors. When placing a transparent hydrogel in an acid bath, as hydrogen bonds between comonomer units involving protonated COOH groups are formed faster than water diffusion, a nonequilibrium light-scattering state is formed to turn the hydrogel opaque, while as the swelling equilibrium is reached over time, the hydrogel regains its transparency. Likewise, when the transparent, hydrogen-bonded hydrogel is subsequently immersed in DI water, faster water absorption occurs in where more COOH groups are deprotonated, which also generates a light-scattering state leading to opacity, while the transparency is slowly recovered after equilibrium. Using such two-way dynamic transparency evolution, a PAN-based hydrogel material is prepared to demonstrate a dynamic memory system for information memorizing-forgetting and recalling-forgetting.  相似文献   

9.
To investigate the structure and dynamics of water in mixed solutions including laponite clay particles and poly(ethylene oxide) (PEO), we measured the Raman spectra of the mixed solutions in the temperature range 283-313 K. The results show that the vibrational energies of the O-H stretching modes in the mixed solutions depend on the water content and temperature. The energy shifts of the O-H stretching modes are attributed to changes in the water structure. By applying a structural model of bulk water to the spectra in the O-H stretching region, the local structures of water in the solutions were analyzed. The result shows that the formation probability of hydrogen bonds in the solutions decreases as the water content decreases. Laponite and PEO have effects to disrupt the network structure of hydrogen bonds between water molecules. Further, it was found that laponite and PEO cause increase in the strength of hydrogen bonds of surrounding water,although the strength of the hydrogen bonds increases with the order water-laponite < water-water < water-PEO. It is concluded that water in laponite-PEO mixed solutions has a less-networked structure with strong hydrogen bonds compared with bulk water.  相似文献   

10.
11.
用密度泛函理论对水和甲醇混合溶剂体系的氢键结构进行了详细研究.通过构象和频率分析发现在水团簇中五聚体和六聚体环状结构最为稳定,同时发现一个全新的特征,即甲醇分子能与水五聚体和六聚体形成双氢键.根据各相互作用的稳定化能,分析了水和甲醇混合溶剂对PNIPAM溶解能力的影响,并对实验现象给予了合理解释.  相似文献   

12.
The hydration of a simple sugar is an essential model for understanding interactions between hydrophilic groups and interfacial water molecules. Here I perform first-principles molecular dynamics simulations on a glucose-water system and investigate how individual hydroxyl groups are locally hydrated. I demonstrate that the hydroxyl groups are less hydrated and more incompatible with a locally tetrahedral network of hydrogen bonds than previously thought. The results suggest that the hydroxyl groups form roughly two hydrogen bonds. Further, I find that the local hydration of the hydroxyl groups is sensitively affected by seemingly small variations in the local electronic structure and bond polarity of the groups. My findings offer insight into an atomic-level understanding of sugar-water interactions.  相似文献   

13.
甘油水溶液氢键特性的分子动力学模拟   总被引:3,自引:0,他引:3  
为了研究低温保护剂溶液的结构和物理化学特性, 以甘油为保护剂, 采用分子动力学方法, 对不同浓度的甘油和水的二元体系进行了模拟. 得到了不同浓度的甘油水溶液在2 ns内的分子动力学运动轨迹, 通过对后1 ns内运动轨迹的分析, 得到了各个原子对的径向分布函数和甘油分子的构型分布. 根据氢键的图形定义, 分析了氢键的结构和动力学特性. 计算了不同浓度下体系中平均每个原子(O和H)和分子(甘油和水)参与氢键个数的百分比分布及其平均值. 同时还计算了所有氢键、水分子之间的氢键以及甘油与水分子之间的氢键的生存周期.  相似文献   

14.
An ab initio quantum mechanical charge field molecular dynamics simulation was carried out for one methanol molecule in water to analyze the structure and dynamics of hydrophobic and hydrophilic groups. It is found that water molecules around the methyl group form a cage-like structure whereas the hydroxyl group acts as both hydrogen bond donor and acceptor, thus forming several hydrogen bonds with water molecules. The dynamic analyses correlate well with the structural data, evaluated by means of radial distribution functions, angular distribution functions, and coordination number distributions. The overall ligand mean residence time, τ identifies the methanol molecule as structure maker. The relative dynamics data of hydrogen bonds between hydroxyl of methanol and water molecules prove the existence of both strong and weak hydrogen bonds. The results obtained from the simulation are in excellent agreement with the experimental results for dilute solution of CH(3)OH in water. The overall hydration shell of methanol consists in average of 18 water molecules out of which three are hydrogen bonded.  相似文献   

15.
Hydrogen bonds are known to play an important role in prescribing the mechanical performance of certain hydrogels such as polyether-based polyurethanes. The quantitative contribution of hydrogen bonds to the toughness of polymer networks, however, has not been elucidated to date. Here, a new physical model is developed to predict the threshold fracture energies of hydrogels physically crosslinked via hydrogen bonds. The model is based on consecutive and sequential dissociation of hydrogen-bonded crosslinks during crack propagation. It is proposed that the scission of hydrogen bonds during crack propagation allows polymer strands in the deformation zone to partially relax and release stored elastic energy. The summation of these partial chain relaxations leads to amplified threshold fracture energies which are 10–45 times larger than those predicted by the classical Lake–Thomas theory. Experiments were performed on a hydrophilic polyurethane hydrogel where urea additions were used to control the density of hydrogen bonds. The measured fracture energies were in good agreement with the calculated values. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1287–1293  相似文献   

16.
对50个单元构成的聚N,N-二乙基丙烯酰胺(PDEA)低聚物的水溶液体系进行了分子动力学的研究,分别模拟了300 K时的伸展链、310 K时的伸展链以及紧缩链与水构成的体系,对溶液中PDEA周围溶剂水分子的分布情况以及水分子形成氢键的情况进行了统计,结果表明在PDEA周围的水产生了比本体水更有序的结构,形成了更多的氢键,这种有序结构维持到第二水合层甚至更远.发生相分离后,PDEA与水分子形成的氢键大部分未被破坏,水合层中每个水分子形成的氢键数也没有明显变化,但水合层(形成有序结构的水分子)内水分子数目的减少使得总的氢键数目减少,从而造成体系能量增加及熵增加.同时还研究了聚合物及水分子的自扩散系数,表明PDEA影响周围水分子结构的同时,对水的动力学性质也产生了很大影响.  相似文献   

17.
A molecular dynamics simulation study of structural and dynamical properties in liquid mixtures of formamide and water is presented. Site-site radial pair distribution functions, local mole fractions, pair energy distributions, and tetrahedral orientational order are the quantities analyzed to investigate the local structure in the simulated mixtures, along with a review of the intermolecular structure in terms of the distribution of hydrogen bonds. Our results indicate that there is a substitution of formamide molecules by water in the hydrogen bonds and a formation of a common hydrogen bond network. By analyzing the extent of tetrahedral order in the liquid as a function of composition, it is observed that whereas the tetrahedral network of liquid water is progressively lost by increasing the formamide concentration, the water structure within the first coordination shell is preserved and somewhat enhanced. The hydrogen-bond mean lifetimes were estimated by performing a time integration of the autocorrelation functions of bond occupation numbers. The lifetimes associated with hydrogen bonds between water, formamide, and interspecies pairs are found to increase with increasing formamide concentration. The lifetimes of the water hydrogen bonds show the largest variations, supporting the picture of an enhancement of the water structure among the nearest neighbors within the first coordination shell. We have used two different force field models for water, SPC/E [J. C. Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] and TIP4P/2005 [J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005)]. Our results for structural and dynamical properties yield very small differences between those models, the TIP4P/2005 predicting a slightly more structured liquid and, consequently, exhibiting a slightly slower translational and librational dynamics.  相似文献   

18.
Dihydroxypropyl-chitosan (DHP-chitosan), a derivative of chitosan used in practical applications, is hardly soluble in water because of the strong intermolecular hydrogen bonding. In order to improve its even more advanced practical applications, some further modifications of the polymer using electron beam radiation technique were carried out. In the current work, diluted lactic acid was used to improve the solubility of DHP-chitosan as a subversive of hydrogen bonding. The effects of electron beam radiation on the DHP-chitosan in solid state and solution state were investigated. It was found that solid state and low concentrated solution state result in degradation and high concentrated solution state is favorable for crosslinking. And a simple, effective strategy to achieve a novel DHP-chitosan hydrogel without any crosslinking agents was developed in a high concentrated polymer solution system under irradiation.  相似文献   

19.
Consolute phenomena in the aqueous solutions of the polymers are considered In view of the temperature induced structural changes of the hydrogen bonds between water and functional groups of polymer. The lower and upper critical consolute points are attributed to the appearance of the “critical” concentration of the complexes with one hydrogen bond between single water molecule and functional group of polymer. Namely such kind of the hydrogen bonds are responsible for the formation of the strongly associated water clusters, that may be followed by phase separation. Experimentally observed dependences of the critical consolute temperatures for the aqueous solutions of polyethylene glycol on the molecular weight of polymer and adding of salts are well reproduced in the framework of the proposed model.  相似文献   

20.
The intelligent controlled drug delivery systems (DDS) are a series of the preparations including microcapsules or nanocapsules composed of intelligent polymers and medication. The properties of preparations can change with the external stimuli, such as pH value, temperature,chemical substance, light, electricity and magnetism etc. According to this properties, the DDS can be intelligently controlled. This paper has reviemed research on syntheses and applications of intelligent controlled DDS of polymer carriers.Drug delivery system with pH stimuliThe volume of polymer hydrogel can change with the pH value of external environment. The sensitive polymer hydrogels to pH are often as carriers. The polymer hydrogel carrying medicine is especially suitable for taking orally. In order to protect medicine from losing activation, we enwrapped medicine into polymer hydrogel with acidic group. In the acidic environment of stomach,the volume of polymer hydrogel contracts because of the hydrogen bond. The medicine in the polymer hydrogel cannot disperse out. When it goes to the intestine of basic environment, the hydrogen bond will be broken, and the medicine can release.Drug delivery system with temperatureTemperature sensitive polymer hydrogel can change its volume with changing of environmental temperature. This kind of polymer hydrogel can be also used as a carrier of medicine. At a low temperature, the polymer chains form hydrogen bond with water to swell to let medicine disperse out from the hydrogel. On the other hand, the hydrogen bond will be broken and polymer chain will lose water to contract with temperature's increasing. And the medicine will not disperse out. For example,the poly(N-isopropylacrylamide)(PNIPAAm) is the hydrogel that is swelled at lower temperature and contracted at higher temperature. PNIPAAm has the lower critical solution temperature(LCST).We can adjust its LCST to control PNIPAAm hydrogel's swelling or contraction to let medicine release or not.Drug delivery system with other stimuliThe polymer carrier drug delivery system can be intelligently controlled with the stimuli of pH value and temperature. In addition, there are still some other stimuli for DDS. For example, DDS with light; DDS with electricity(or electric field); DDS with magnetism(magnetic field); DDS with chemical substance; etc. The characteristic of intelligent polymer carrier is based on P.J.Flory's gel-swelling theory. Intelligent polymer carrier DDS will be widely used in biological and medical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号