首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent years have seen the rapid development of a new field of palladium catalysis in organic synthesis. This chemistry takes place outside the usually encountered Pd0/PdII cycles. It is characterized by the presence of strong oxidants, which prevent further palladium(II)‐promoted reactions at a given point of the catalytic cycle by selective metal oxidation. The resulting higher‐oxidation‐state palladium complexes have been used to develop a series of new synthetic transformations that cannnot be realized within conventional palladium catalysis. This type of catalysis by palladium in a higher oxidation state is of significant synthetic potential.  相似文献   

2.
The oxidative intramolecular diamination of alkenes with tethered ureas and related groups as the nitrogen source has been investigated both with the iodonium reagent IPy2BF4 (Py=pyridine) and under palladium catalysis in the presence of copper(II) bromide as a reoxidant. For terminal alkenes, the two procedures enable selective and high‐yielding transformations. Studies with deuterated material led to the conclusion that the reactions proceed through different stereochemical pathways. An advanced protocol for palladium‐catalyzed diamination through six‐membered‐ring annulation was also developed, and the first examples of the intramolecular diamination of internal alkenes are described. In this case, the same stereochemical outcome was observed for the iodonium‐promoted and palladium‐catalyzed transformations. On this basis, it was possible to determine the importance of aminohalogenated intermediates in both diamination reactions. Overall, the disclosed procedures broaden significantly the synthetic applicability of the oxidative intramolecular diamination of alkenes.  相似文献   

3.
2-Furoyl or 2-thenoyl chlorides readily react with activated alkenes in the presence of a tertiary amine and a catalytic amount of palladium(II) acetate to give 2-furylated or 2-thienylated alkenes. Under similar conditions, 2-benzofuroyl chloride undergoes facile alkenylation to produce 2-alkenylated benzofurans. The reaction involves a highly efficient decarbonylation of furoyl or thenoyl-palladium species.  相似文献   

4.
The versatility of palladium(II) acetate and palladium on activated charcoal catalysts with triethylsilane has been investigated in the hydrogenation and the isomerization of carbon–carbon double bond of 1‐alkenes. The reduction of 1‐alkenes was carried out in the presence of triethylsilane, ethanol and a catalytic amount of palladium(II) acetate or palladium on activated charcoal, at room temperature. This facile and efficient method affords high yields for hydrogenation of unsaturated alkenes to the corresponding alkanes. Then the carbon–carbon double bond isomerization of 1‐alkenes was tested using the same catalysts in the absence of solvent. The system palladium(II) acetate‐triethylsilane was found to be more effective compared with palladium on an activated charcoal–triethylsilane system at room temperature, while comparable results were obtained at 50 °C for both catalysts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Herein, we report an asymmetric intermolecular Heck-type reaction of acyclic alkenes by using a palladium-pyridinyl oxazoline diacetate complex under oxidative palladium(II) catalysis conditions. A premade palladium-ligand complex afforded higher enantioselectivities than a corresponding premixed palladium-ligand system, while offering enhanced asymmetric induction when compared to known intermolecular Heck-type protocols.  相似文献   

6.
A new synthetic methodology for the catalytic C-H functionalisation of 2-pyrones is described which proceeds regioselectively at the C3 position, mirroring the observed regioselectivity in 6π-electrocyclisation/oxidative aromatisation reactions of related compounds. Insight into the reaction mechanism is provided, with support for a neutral palladium(II) pathway. Cationic palladium(II) complexes possessing 2-pyrones are unstable and readily undergo Pd(II)→P transfer at ambient temperature resulting in phosphonium salt formation (and Pd(0)L(n) species).  相似文献   

7.
以白屈氨酸为原料, 经酯化、还原、溴化、胺化等反应合成了4位带活性基团的新型含氮(NN'N)三齿配体, 配体进一步与氯化钯反应制得了Pd(II)的配合物, 并用红外、核磁、元素分析等手段进行了表征. 考察了这种钳形配合物的催化性能, 结果表明该配合物对卤代苯与乙烯基化合物的Heck芳基化反应具有较高的催化活性.  相似文献   

8.
The palladium‐catalyzed Heck reaction is a well‐known, Nobel Prize winning transformation for producing alkenes. Unlike the alkenyl and aryl variants of the Heck reaction, the alkyl‐Heck reaction is still underdeveloped owing to the competitive side reactions of alkyl–palladium species. Herein, we describe the development of a deaminative alkyl‐Heck‐type reaction that proceeds through C?N bond activation by visible‐light photoredox catalysis. A variety of aliphatic primary amines were found to be efficient starting materials for this new process, affording the corresponding alkene products in good yields under mild reaction conditions. Moreover, this strategy was successfully applied to deaminative carbonylative alkyl‐Heck‐type reactions.  相似文献   

9.
Palladium(II) and platinum(II) Lewis acid catalysts bearing BINAP have been proved to be water-tolerant in enantioselective carbonyl-ene reactions, thus arylglyoxal monohydrate could be used directly as substrate achieving good to excellent enantioselectivities as high as 95.4% e.e.. The enantioselective carbonyl-ene reactions using phenylglyoxal monohydrate as substrate with four alkenes including methylenecyclohexane, 2,3-dimethyl-1-butene, 2,4,4-trimethyl-1-pentene and alpha-methylstyrene, were investigated demonstrating comparable or even higher yields and enantioselectivities in comparison with the corresponding carbonyl-ene reactions using dry phenylglyoxal as substrate for both palladium(II)-BINAP catalyst and platinum(II)-BINAP catalyst. The palladium(II) and platinum(II)-BINAP catalyzed enantioselective carbonyl-ene reactions between 4-methylphenylglyoxal monohydrate and the four alkenes were also investigated affording enantioselectivities between 76.2% and 91.8% e.e.. A mechanism involving the coordination of arylglyoxal and 2,2-dihydroxy-1-phenylethanone with chiral catalyst was proposed to interpret the enantioselective carbonyl-ene reactions using arylglyoxal monohydrate as substrate.  相似文献   

10.
1-Methoxy-3-trimethylsiloxy-1,3-butadiene (Danishefsky's diene) is recognized as a synthetically useful diene due to its high reactivity in the Diels-Alder reaction with electron-deficient alkenes to give oxygen-functionalyzed cyclohexenes and substituted cyclohexenones, which are important building blocks for the total synthesis of natural products. However, the development of catalytic enantioselective versions of Diels-Alder reactions using Danishefsky type dienes with electron-deficient alkenes has been difficult because of the instability of the dienes under Lewis acidic conditions. Only highly reactive CO and CN double bonds are employed in a hetero-Diels-Alder reaction which proceeds under catalysis of chiral Lewis acids. We have developed a new chiral ligand, BINAMIDE, which is easily prepared from 1,1'-binaphtyl-2,2'-diamine by acylation. The highly diastereo- and enantioselective Diels-Alder reaction of Danishefsky type dienes with electron-deficient alkenes in the presence of an Yb(III)-BINAMIDE complex has been developed. The reaction proceeded in an exoselective mode and gave chiral highly functionalized cyclohexene derivatives in good yields.  相似文献   

11.
The electrophilic activation of alkenes by transition-metal catalysts is a fundamental step in a rapidly growing number of catalytic processes. Although palladium is the best known metal for this purpose, the special properties of its third-row cousin platinum (strong metal-ligand bonds and slow substitution kinetics) have enabled the development of transformations that are initiated by addition to the C=C bonds by protic carbon, nitrogen, oxygen, and phosphorus nucleophiles, as well as alkene or arene nucleophiles. Additionally, reactivity profiles, which are often unique to platinum, provide wholly new reaction products. This Review concerns platinum-catalyzed electrophilic alkene activation reactions, with a special emphasis on the mechanistic properties of known systems, on the differences between platinum and palladium catalysts, and on the prospects for the development of new systems.  相似文献   

12.
Palladium(II) catalysis allows various aerobic oxidation reactions, but the mechanism of the regeneration of the active catalytic species remains, in many cases, undetermined. In recent years, considerable effort has been directed toward the comprehension of the reaction of dioxygen with hydridopalladium(II) and palladium(0) complexes. This Focus Review highlights the results of these experimental and theoretical studies that can contribute to the exploitation of the powerful nature of PdII catalysis.  相似文献   

13.
Yoon CH  Yoo KS  Yi SW  Mishra RK  Jung KW 《Organic letters》2004,6(22):4037-4039
[reaction: see text] Oxygen-promoted Pd(II) catalysis facilitated the synthesis of conjugated dienes by cross-coupling of alkenylboronic compounds and various olefins including highly substituted alkenes and cyclohexenone. Under mild conditions, these versatile reactions were efficient and highly stereoselective.  相似文献   

14.
The first enantioselective α‐allylation of aldehydes with terminal alkenes has been realized by combining asymmetric counteranion catalysis and palladium‐catalyzed allylic C H activation. This method can tolerate a wide scope of α‐branched aromatic aldehydes and terminal alkenes, thus affording allylation products in high yields and with good to excellent levels of enantioselectivity. Importantly, the findings suggest a new strategy for the future creation of enantioselective C H/C H coupling reactions.  相似文献   

15.
The first broad-scope catalytic asymmetric Tamura cycloaddition reactions are reported. Under the influence of anion-binding bifunctional catalysis a wide range of α,β-unsaturated N-trityl imines undergo reactions with enolisable anhydrides to form highly synthetically useful α-tetralone structures with excellent enantio- and -diastereocontrol. In stark contrast to the previous literature benchmarks, doubly activated or highly electron deficient alkenes are not required. A facile two-step, high yielding sequence can convert the cycloadducts to α-haloketones (challenging to generate catalytically by other means) with the net formation of two new C−C bonds and three new contiguous stereocentres with exquisite stereocontrol. A DFT study has provided insight into the catalyst mode of action and the origins of the observed enantiocontrol.  相似文献   

16.
Properties of the Pd(acac)2-nNaBH4 system in catalysis of the reactions of hydrogenation of alkenes, alkynes, and carbonyl and nitro groups were studied. A number of spectral methods (NMR, UV spectroscopy) and X-ray phase analysis were used to examine the main stages of formation of palladium hydrogenation catalysts produced in the interaction of Pd(acac)2 with sodium tetrahydroborate, and reasons for the bimodal nature of the dependence of the catalytic activity on the B/Pd ratio were considered.  相似文献   

17.
Leaching of palladium species from Pd nanoparticles under C--C coupling conditions was observed for both Heck and Suzuki reactions by using a special membrane reactor. The membrane allows the passage of palladium atoms and ions, but not of species larger than 5 nm. Three possible mechanistic scenarios for palladium leaching were investigated with the aim of identifying the true catalytic species. Firstly, we examined whether or not palladium(0) atoms could leach from clusters under non-oxidising conditions. By using our membrane reactor, we proved that this indeed happens. We then investigated whether or not small palladium(0) clusters could in fact be the active catalytic species by analysing the reaction composition and the palladium species that diffused through the membrane. Neither TEM nor ICP analysis supported this scenario. Finally, we tested whether or not palladium(II) ions could be leached in the presence of PhI by oxidative addition and the formation of [Pd(II)ArI] complexes. Using mass spectrometry, UV-visible spectroscopy and 13C NMR spectroscopy, we observed and monitored the formation and diffusion of these complexes, which showed that the first and the third mechanistic scenarios were both possible, and were likely to occur simultaneously. Based on these findings, we maintain that palladium nanoparticles are not the true catalysts in C--C coupling reactions. Instead, catalysis is carried out by either palladium(0) atoms or palladium(II) ions that leach into solution.  相似文献   

18.
The first enantioselective α‐allylation of aldehydes with terminal alkenes has been realized by combining asymmetric counteranion catalysis and palladium‐catalyzed allylic C? H activation. This method can tolerate a wide scope of α‐branched aromatic aldehydes and terminal alkenes, thus affording allylation products in high yields and with good to excellent levels of enantioselectivity. Importantly, the findings suggest a new strategy for the future creation of enantioselective C? H/C? H coupling reactions.  相似文献   

19.
The cooperative catalysis by palladium and triphenylborane effects the intramolecular oxycyanation of alkenes through the cleavage of O-CN bonds and the subsequent insertion of double bonds. The use of 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) as a ligand for palladium is essential for allowing the transformation to proceed with high chemo- and regioselectivity. Variously substituted dihydrobenzofurans with both a tetra-substituted carbon and cyano functionality are accessed by the newly developed methodology.  相似文献   

20.
Developing highly active catalysts with the combined advantages of molecular and solid catalysis is considered as the “Holy Grail” in the area of catalysis research. Herein, a phosphorus‐doped porous polymer‐immobilized palladium was successfully developed as an efficient, robust, and recyclable catalyst for the carbonylative Suzuki coupling and alkoxycarbonylation reactions of aryl halides. Rather than just as an immobilizing molecular catalyst, palladium supported on phosphorus‐doped porous organic polymer exhibits even better catalytic performances than that of its analogue homogeneous catalysts in both carbonylation reactions. Moreover, the catalyst can be easily separated and reused for at least 5 times without significant loss in reactivity. Importantly, the catalyst was highly stable under carbonylation reaction conditions, and no palladium nanoparticle was observed even after the 5th reuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号