首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ferrites of composition ErMIFe2O5 (MI = Li, Na, K, Cs) were synthesized by a solid-phase method. The structure of the ferrites was for the first time studied by X-ray powder diffraction. Crystal systems, unit cell parameters, and X-ray and pycnometric densities were determined. For ErLiFe2O5, a = 10.510 Å, c = 14.270 Å, V°= 1616.16 Å3, Z = 16, V subcell ° = 101.01 Å3, ρx = 6.01 g/cm3, ρpyc = 5.97 ± 0.04 g/cm3; for ErNaFe2O5, a = 10.519 Å, c = 15.510 Å, V° = 1759.56 Å3, Z = 16, V subcell ° = 109.90 Å3, ρx = 5.77 g/cm3, ρpyc = 5.72 ± 0.08 g/cm3; for ErKFe2O5, a = 11.050 Å, c = 15.480 Å, V° = 1937.33 Å3, Z = 16, V subcell ° = 121.08 Å3, ρx = 5.46 g/cm3, ρpyc = 5.41 ± 0.04 g/cm3; and for ErCsFe2O5, a = 10.78 Å, c = 16.01 Å, V° = 1905.37 Å3, Z = 16, V subcell ° = 119.09 Å3, ρx = 6.86 g/cm3, ρpyc = 6.61 ± 0.01 g/cm3.  相似文献   

2.
The heat capacities of Pb2V2O7 and Pb3(VO4)2 as a function of temperature in the range 350–965 K have been studied by the differential scanning calorimetry method. The CP = f(T) curve for Pb2V2O7 is described by the equation Cp = (230.76 ± 0.51) + (73.60 ± 0.50)×10-3T ? (18.38 ± 0.54)×105T-2 in the entire temperature range. For Pb3(VO4)2, there is a well-pronounced extreme point in the CP = f(T) curve at T = 371.5 K, which is caused by the existence of a structural phase transition. The thermodynamic properties of the oxide compounds have been calculated.  相似文献   

3.
The syntheses and crystal structures of the layered coordination polymers M(C8H8NO2)2 [M = Mn (1), Co (2), Ni (3) and Zn (4)] are described. These isostructural compounds contain centrosymmetric trans-MN2O4 octahedra as parts of infinite sheets; the ligand bonds to three adjacent metal ions in μ3-N,O,O′ mode from both its carboxylate O atoms and its amine N atom. In each case, weak intra-sheet N–H?O and C–H?O hydrogen bonds may help to consolidate the structure. Crystal data: 1, C16H16MnN2O4, M r = 355.25, monoclinic, P21/c (No. 14), a = 10.6534(2) Å, b = 4.3990(1) Å, c = 15.5733(5) Å, β = 95.1827(10)°, V = 726.85(3) Å3, Z = 2, R(F) = 0.026, wR(F 2) = 0.067. 2, C16H16CoN2O4, M r = 359.24, monoclinic, P21/c (No. 14), a = 10.6131(10) Å, b = 4.3374(4) Å, c = 15.3556(17) Å, β = 95.473(4)°, V = 703.65(12) Å3, Z = 2, R(F) = 0.041, wR(F 2) = 0.091. 3, C16H16N2NiO4, M r = 359.02, monoclinic, P21/c (No. 14), a = 10.6374(4) Å, b = 4.2964(2) Å, c = 15.2827(8) Å, β = 95.9744(14)°, V = 694.66(6) Å3, Z = 2, R(F) = 0.028, wR(F 2) = 0.070. 4, C16H16N2O4Zn, M r = 365.68, monoclinic, P21/c (No. 14), a = 10.6385(5) Å, b = 4.2967(3) Å, c = 15.2844(8) Å, β = 95.941(3)°, V = 694.89(7) Å3, Z = 2, R(F) = 0.038, wR(F 2) = 0.107.  相似文献   

4.
Ytterbium alkali-metal chromites YbMCr2O5 (M = Li, Na, K, Cs) were synthesized by a ceramic procedure from the corresponding oxides and carbonates. Their crystal systems and unit cell parameters were determined by the homology method: for YbLiCr2O5, a = 10.34 Å, b = 10.62 Å, c = 15.05 Å, Z = 16, V o = 1653.74 Å3, ρX-ray = 5.85 g/cm3, ρpycn = 5.81 ± 0.03 g/cm3; for YbNaCr2O5, a = 10.30 Å, b = 10.56 Å, c = 16.46 Å, Z = 16, V o = 1790.32 Å3, ρX-ray = 5.64 g/cm3, ρpycn = 5.59 ± 0.07 g/cm3; for YbKCr2O5, a = 10.33 Å, b = 10.63 Å, c = 19.93 Å, Z = 16, V o = 2188.47 Å3, ρX-ray = 5.95 g/cm3, ρpycn = 5.91 ± 0.03 g/cm3; and for YbCsCr2O5, a = 10.34 Å, b = 10.63 Å, c = 18.43 Å, Z = 16, V o = 2025.72 Å3, ρX-ray = 5.19 g/cm3, ρpycn = 5.16 ± 0.05 g/cm3.  相似文献   

5.
A new complex [UO2CrO4{CH3CON(CH3)2}2] (I) was studied by thermal analysis, IR spectroscopy, and X-ray crystallography. The crystals are monoclinic: a = 13.8108(11) Å, b = 8.6804(7) Å, c = 13.0989(10) Å, β = 104.777(1)°, V = 1518.4(2) Å3, space group P21/c, Z = 4, R = 2.39%. The structure of I contains infinite chains of the [UO2CrO4{CH3CON(CH3)2}2] composition running along [001]; the complex belongs to the AT11M1 2 crystal-chemical group (A = UO 2 2+ , T11 = CrO 4 2? , M1 = CH3CON(CH3)2) of uranyl complexes. The chains are linked into a three-dimensional framework due to hydrogen bonds between oxygen atoms of chromate ions and hydrogen atoms of methyl groups of the dimethylacetamide.  相似文献   

6.
The hydrolytic species of lanthanide ions, La3+ and Sm3+, in water at I = 0.1 mol·dm?3 KCl ionic strength and temperatures of 298.15, 310.15 and 318.15 K were investigated by potentiometry. The hydrolytic species were modeled by the HySS simulation program. From the results, the hydrolytic species of each metal ion at different temperatures were calculated using the program HYPERQUAD2013. The hydrolysis constants (log10 β) of [La(OH)]2+ and La(OH)3 were calculated as ?8.52 ± 0.46, ?26.84 ± 0.48, and log10 β values of [Sm(OH)]2+, [Sm(OH)2]+, Sm(OH)3 were calculated as ?7.11 ± 0.21, ?15.84 ± 0.25 and ?23.44 ± 0.52 in aqueous media at 298.15 K, respectively. The dependence of the hydrolysis constants on the temperature allowed us to calculate the enthalpy, entropy, and Gibbs energy of hydrolysis values of each species.  相似文献   

7.
A novel Cu(II) complex Cu2(Endc)2(Bipy)2 has been synthesized by the reaction of Cu(NO3)2 · 3H2O, Endc (endo-norbornene-cis-5,6-dicarboxylic acid), and Bipy (2,2-bipyridine) at room temperature. Elemental analysis, IR spectra, and X-ray single-crystal diffraction were carried out to determine the composition and crystal structure. Crystal data for this complex: triclinic, P \(\bar 1\) with a = 9.0373(10), b = 10.1637(11), c = 10.5574(12) Å, α = 65.78(1)°, β = 72.32(2)°, β = 73.23(2)°, Z = 1, V = 827.46(16) Å3, ρ c = 2.160 g/cm3, F(000) = 410.0, R = 0.0483 and wR = 0.0958 independent reflections for 4468 observed ones (I > 2 σ(I)).The Cu2+ ion is coordinated by two nitrogen atoms from the Bipy molecule and three oxygen atoms from two Endc, giving a distorted squarepyramidal coordination geometry. Two neighboring Cu2+ ions are bridged by a pair of bimonodentate carboxyl groups of different Endc acids, giving a centrosymmetrical binuclear structure which a Cu…Cu distance of 3.2946 Å. The photoluminescence properties of the complex were studied at room temperature. The complex displays an obvious photoluminescent emission upon excitation at 390 nm in the solid state.  相似文献   

8.
The complex [Co(2-Me-Pyz)2(H2O)4](NO3)2 is synthesized and its structure is determined. The crystals are monoclinic: space group P21/n, a = 10.685(2) Å, b = 6.837(1), c = 12.515(3) Å, β = 91.84(3)°, V = 913.8(3) Å3, ρcalcd = 1.042 g/cm 3, Z = 2. The Co2+ ion (in the inversion center) is coordinated at the vertices of the distorted octahedron by two nitrogen atoms of methylpyrazine and four oxygen atoms of the water molecules (Co(1)–N(1) 2.180(3), average Co(1)–O(w) 2.079(3) Å, angles at the Co atom 87.9(1)–92.1(1)°). Supramolecular pseudometallocycles are formed in the structure through the O(w)–H…N(1) hydrogen bonds between the coordinated H2O molecules and the terminal nitrogen atoms of the 2-methylpyrazine molecules. Their interaction results in the formation of supramolecular layers joined by the NO3 groups into a three-dimensional framework.  相似文献   

9.
New ferrites ErMFe2O5 (M = Li, Na, K) were synthesized from erbium and iron(III) oxides and lithium, sodium, and potassium carbonates by solid-state annealing. According to X-ray powder diffraction, these compounds crystallize in the orthorhombic system with the following unit cell parameters: ErLiFe2O5, a = 10.510 Å, b = 10.776 Å, c = 14.270 Å, V 0 = 1616.16 Å3; Z = 16, V subcell 0 = 101.01 Å3, ρX = 6.01 g/cm3, ρpycn = 5.97 ± 0.05 g/cm3; ErNaFe2O5, a = 10.519 Å, b = 10.785 Å, c = 15.510 Å, V 0 = 1759.56 Å3, Z = 16, V subcell 0 = 109.90 Å3, ρX = 5.77 g/cm3, ρpycn = 5.72 ± 0.08 g/cm3; ErKFe2O5, a = 10.050 Å, b = 11.320 Å, c = 15.480 Å, V 0 = 1937.33 Å3, Z = 16, V subcell 0 = 121.08 Å3, ρX = 5.46 g/cm3, ρpycn = 5.41 ± 0.04 g/cm3.  相似文献   

10.
Novel complex salts [Au(en)2]Cl(ReO4)2 (I) and [Au(en)2](ReO4)3 (II), en = ethylenediamine, are obtained. Their crystal structures are determined by single crystal X-ray diffraction. Complex I crystallizes in the triclinic crystal system: a = 6.2172(7) Å, b = 7.1644(8) Å, c = 8.8829(8) Å, α = 96.605(4)°, β = 110.000(4)°, γ = 97.802(4)°, P-1 space group, Z = 1, d x = 3.905 g/cm3; complex II crystallizes in the monoclinic crystal system: a = 15.244(2) Å, b = 7.6809(8) Å, c = 9.3476(12) Å, β = 127.004(3)°, C2 space group, Z = 4, d x = 4.057 g/cm3.  相似文献   

11.
1,10-Phenanthrolinetris(4-methoxybenzoate)dysprosium, Dy(p-MOBA)3Phen (where p-MOBA = p-methoxybenzoate and Phen = 1,10-phenanthroline), (I) has been synthesized. The complex was characterized by various techniques including elemental analysis, UV, IR, XRD, molar conductance, and TG-DTG. The crystals consist of binuclear molecules and monoclinic, space group P2 1/n: a = 14.143(6) Å, b = 17.550(7) Å, c = 14.493(6) Å, β = 117.357(4)°, Z = 2, ρ c = 1.655 g cm?3, F(000) = 1588; R 1 = 0.0176, wR 2 = 0.0455. In the complex, each Dy3+ ion is nine-coordinate to one 1,10-phenanthroline molecule, one bidentate chelating carboxylate group, and four bridging carboxylate groups in which the carboxylate groups are bonded to the Dy3+ ions in three modes: bridging bidentate, bridging tridentate, and chelating bidentate. The thermal decomposition mechanism of I has been determined on the basis of thermal analysis. In addition, the lifetime equation at a weight-loss of 10% was deduced as lnτ = ?28.8361 + 19478.37/T by isothermal thermogravimetric analysis.  相似文献   

12.
A potentiometric method has been used for the determination of the protonation constants of N-(2-hydroxyethyl)iminodiacetic acid (HEIDA or L) at various temperatures 283.15?≤?T/K?≤?383.15 and different ionic strengths of NaCl(aq), 0.12?≤?I/mol·kg?1?≤?4.84. Ionic strength dependence parameters were calculated using a Debye–Hückel type equation, Specific Ion Interaction Theory and Pitzer equations. Protonation constants at infinite dilution calculated by the SIT model are \( \log_{10} \left( {{}^{T}K_{1}^{\text{H}} } \right) = 8.998 \pm 0.008 \) (amino group), \( \log_{10} \left( {{}^{T}K_{2}^{\text{H}} } \right) = 2.515 \pm 0.009 \) and \( \log_{10} \left( {{}^{T}K_{3}^{\text{H}} } \right) = 1.06 \pm 0.002 \) (carboxylic groups). The formation constants of HEIDA complexes with sodium, calcium and magnesium were determined. In the first case, the formation of a weak complex species, NaL, was found and the stability constant value at infinite dilution is log10KNaL?=?0.78?±?0.23. For Ca2+ and Mg2+, the CaL, CaHL, CaL2 and MgL species were found, respectively. The calculated stability constants for the calcium complexes at T?=?298.15 K and I?=?0.150 mol·dm?3 are: log10βCaL?=?4.92?±?0.01, log10βCaHL?=?11.11?±?0.02 and \( \log_{10} \beta_{\text{Ca{L}}_{2}} \)?=?7.84?±?0.03, while for the magnesium complex (at I?=?0.176 mol·dm?3): log10βMgL?=?2.928?±?0.006. Protonation thermodynamic functions have also been calculated and interpreted.  相似文献   

13.
The crystal structures of compounds from the series [M(NH3)5Cl](NO3)2, (M = Ir, Rh, Ru) were described. The compounds crystallized in the tetragonal crystal system, space group I4, Z = 2. Crystal data for [Ir(NH3)5Cl](NO3)2 (I): a = 7.6061(1) Å, b = 7.6061(1) Å, c = 10.4039(2) Å, V = 601.894(16) Å3, ρcalc = 2.410 g/cm3, R = 0.0087; [Rh(NH3)5Cl](NO3)2 (II): a = 7.5858(5) Å, b = 7.5858(5) Å, c = 10.41357(7) Å, V = 599.24(7) Å3, ρcalc = 1.926 g/cm3, R = 0.0255; [Ru(NH3)5Cl](NO3)2 (III): a = 7.5811(6) Å, b = 7.5811(6) Å, c = 10.5352(14) Å, V = 605.49(11) Å3, ρcalc = 1.896 g/cm3, R = 0.0266. The compounds were defined by IR spectroscopy and XRPA and thermal analyses.  相似文献   

14.
The reaction of cyclopentylamine with 2-hydroxy-1-naphthaldehyde and 5-nitrosalicylaldehyde, respectively, in methanol affords two new Schiff bases, 1-(cyclopentyliminomethyl)naphthalen-2-ol (HL1) and 4-nitro-2-(cyclopentyliminomethyl)phenol (HL2). Two new zinc(II) complexes, [Zn(L1)2] (I) and [Zn(L2)2] (II), derived from the Schiff bases, have been prepared and characterized by single-crystal X-ray diffraction, FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P21/c with a = 17.834(4), b = 14.738(3), c = 9.868(2) Å, β = 91.20(3)°, V = 2593.1(9) Å3, Z = 4. Complex II crystallizes in the triclinic space group P \(\bar 1\) with a = 10.206(1), b = 10.502(1), c = 12.554(1) Å, α = 66.771(2)°, β = 78.133(2)°, γ = 76.292(2)°, V = 1191.8(1) Å3, Z = 2. The Zn atom in each complex is coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral geometry. The Schiff bases and the complexes were assayed for antibacterial activities.  相似文献   

15.
Powder and single crystal X-ray diffraction studies have been performed for anhydrous nitrate complexes Rb2[Pd(NO3)4] (I) and Cs2[Pd(NO3)4] (II). Crystal data for I: a = 7.843(1) Å, b = 7.970(1) Å, c = 9.725(1) Å; β = 100.39(1)°, V = 597.9(1) Å 3, space group P21/c, Z = 2, d calc = 2.918 g/cm3; for II: a = 10.309(2) Å, b = 10.426(2) Å, c = 11.839(2) Å; β = 108.17(3)°, V = 1209.0(4) Å3, space group P21/c, Z = 4, d calc = 3.408 g/cm3. The structures are formed by isolated [Pd(NO3)4]2? complex anions and alkali metal cations. The plane-square environment of the Pd atom is formed from the oxygen atoms of the monodentate nitrate groups. The geometrical characteristics of the complex anions are analyzed. Compound II has a short contact Pd...Cs 3.252 Å.  相似文献   

16.
Single crystals of (NH4)(CN3H6)[UO2(SeO3)2] (I) are synthesized and studied by X-ray diffraction analysis. The compound crystallizes in the triclinic crystal system with the unit cell parameters: a = 7.0051(2) Å, b = 9.4234(3) Å, c = 9.5408(3) Å, α = 88.727(1)°, β = 70.565(1)°, γ= 77.034(1)°, space group P 1, Z = 2, R = 0.0224. The main structural units of crystals I are the [UO2(SeO3)2]2? chains of the crystal-chemical group AB2B11 (A = UO 2 2+ , B2= SeO3 2?, B11= SeO3 2?) of the uranyl complexes. The uranium-containing complexes are joined into a three-dimensional framework by the ammonium and guanidinium ions and a system of hydrogen bonds.  相似文献   

17.
The binary molybdate Li2Zn2(MoO4)3 of a new crystal type was characterized by EPR, optical spectroscopy, and X-ray diffraction methods. The crystals have the Pnma symmetry group and the lattice parameters a = 5.1139(5) Å, b = 10.4926(13) Å, c = 17.6445(22) Å; Z = 4. The crystals possess scintillation properties; emission is caused by the presence of impurity levels in the forbidden band. The EPR studies of the nature of the impurity centers responsible for the scintillation characteristics of the crystal showed that the centers were Cu2+ ions substituted for zinc ions in the oxygen octahedra. The directions of the main values of the g and tensors (g zz , A zz ) correspond to the direction of O-Cu-O of the oxygen octahedron distorted along the Z axis. The EPR spectra of the copper ions are described by the spin Hamiltonian with the parameters g = 2.38, g = 2.06; A = 116 G, A = 0 G.  相似文献   

18.
A paramagnetic (μef = 3.86 BM) complex Cr(i-Bu2PS2)3 (I) has been synthesized. Single crystals I were grown, and the crystal structure of the compound was determined from X-ray diffraction data (X8 APEX diffractometer, MoK α radiation, 4516 F hkl , R = 0.0604). Monoclinic crystals, space group P21/n, unit cell parameters a = 14.2665(5) Å, b = 11.4400(4) Å, c = 23.1299(8) Å, β = 90.245(1)°, V = 3775.0(2) Å3, Z = 4, d calc = 1.196 g/cm3. The structure is based on discrete mononuclear molecules. The coordination polyhedron of the Cr atom is a distorted S6 octahedron formed from the S atoms of three cyclic bidentate ligands — i-Bu2PS 2 ions. Electron spectroscopy data correspond to the octahedral structure of the CrS6 chromophore. Original Russian Text Copyright ? 2007 by E. A. Sankova, L. A. Glinskaya, T. E. Kokina, R. F. Klevstova, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No. 2, pp. 374–378, March–April, 2007.  相似文献   

19.
The single crystals of [UO2(C2O4){CONH2N(CH3)2}2] were synthesized and studied by X-ray diffraction. The crystals are monoclinic, a = 7.461(2) Å, b = 8.828(2) Å, c = 11.756(2) Å, β = 107.21(3)°, space group Pc, Z = 2, R = 2.94%. The structure comprises infinite chains [UO2(C2O4){CONH2N(CH3)2}2] extended along [001] and corresponding to the AT11M 2 1 crystallochemical group (A = UO 2 2+ , T11 = C2O 4 2? , M1 = N,N-CONH2N(CH3)2) of uranyl complexes. The chains are connected into a three-dimensional framework by hydrogen bonds involving the oxygen atoms of oxalate and uranyl ions and the N,N-dimethylcarbamide methyl groups.  相似文献   

20.
The compounds AMMgE(PO4)3 (A = Na, K, Rb, Cs; M = Sr, Pb, Ba; E = Ti, Zr) were synthesized by the sol–gel procedure followed by heat treatment and studied by X-ray diffraction, differential thermal and electron microprobe analysis, and IR spectroscopy. The phosphates crystallize in the kosnarite (KZr2(PO4)3, space group \(R\bar 3\)) and langbeinite (K2Mg2(SO4)3, space group P213) structural types. The structure of KPbMgTi(PO4)3 was refined by full-profile analysis (space group P213, Z = 4, a = 9.8540(3) Å, V = 956.83(4) Å3). The structure is formed by a framework of vertex-sharing MgO6 and TiO6 octahedra and PO4 tetrahedra. The K and Pb atoms fully occupy the extra-framework cavities and are coordinated to nine oxygen atoms. A variable-temperature X-ray diffraction study of KPbMgTi(PO4)3 showed that the compound expands isotropically and refer to medium-expansion class (linear thermal expansion coefficients α a = α b = α c = 8 × 10–6°C–1). The number of stretching and bending modes of the PO4 tetrahedron observed in the IR spectra is in agreement with that predicted by the factor group analysis of vibrations for space groups \(R\bar 3\) and P213. A structural transition from the cubic langbeinite to the rhombohedral kosnarite was found for CsSrMgZr(PO4)3. In the morphotropic series of ASrMgZr(PO4)3 (A = Na, K, Rb, Cs) the kosnarite–langbeinite transition occurs upon the Na → K replacement. The effect of the sizes and electronegativities of cations combined in AMMgE(PO4)3 on the change of the structural type was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号