首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
王茹英  邱天  毛冲  杨文胜 《电化学》2012,(4):332-336
在恒定pH值下将层状钴铝双羟基复合金属氧化物(CoAl-LDH)均匀包覆在球状Ni(OH)2表面,与LiOH.H2O混合均匀后,经高温煅烧制得钴铝酸锂包覆镍酸锂0.08LiCo0.75Al0.25O2-0.92LiNiO2正极材料.电化学测试表明,0.08LiCo0.75Al0.25O2-0.92LiNiO2正极比容量高,具有良好的倍率性能和循环寿命,其0.1C放电比容量为211 mAh·g-1,0.5C放电比容量为195.6 mAh·g-1,3C放电比容量为161 mAh·g-1,0.5C 30周期循环后容量保持率为93.2%,明显优于LiNiO2和钴酸锂包覆镍酸锂0.08LiCoO2-0.92LiNiO2正极.  相似文献   

2.
利用XRD、SEM、EDS、BET、激光粒度、循环伏安、恒流充放电、交流阻抗方法研究了葡萄糖为碳源对溶胶凝胶法制备Li1.2Ni0.13Co0.13Mn0.54O2正极材料的结构、形貌以及电化学性能的影响.结果表明:与前驱体中未加入葡萄糖所制备的材料相比,掺葡萄糖后样品颗粒分布相对均匀,粒径变小,D50从11.56减小至9.94 μm,比表面积增加近1倍.经0.05C充放电活化后,未掺葡萄糖和掺葡萄糖样品0.2C放电比容量分别为183.4、211.6 mAh·g-1,2C容量分别为其0.2C的62.2%、77.6%.1C循环50次后放电比容量分别为133.3、173.6 mAh·g-1,容量保持率分别为95.1%、100%.掺葡萄糖可降低首次不可逆容量损失,提高材料的倍率性能与循环稳定性,减少电荷传递阻抗、Warburg阻抗以及双电层弥散效应,但不改变材料的晶型结构.  相似文献   

3.
采用感应熔炼方法制备了La0.8-xGd0.2MgxNi3.1Co0.3Al0.1(x=0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4)储氢合金, 并在氩气气氛和1173 K下进行退火处理. 合金相结构分析结果表明, 镁含量(x)较低时合金以Ce2Ni7型为主相结构, A2B7型相丰度(Ce2Ni7+Gd2Co7)达到98.8%; 镁含量较高时合金相由A2B7型、 CaCu5型和PuNi3型物相构成, 随着镁含量的增加, PuNi3型和CaCu5型相组成逐渐增多, 其晶胞参数随Mg含量的增加而减小, 同时合金的吸氢平台也随之升高. 电化学测试结果表明, 随着合金中Mg含量增加, 合金电极的最大放电容量和循环稳定性均呈先增大后减小的规律, 其中x=0.15时合金电极具有最高的电化学放电容量(393 mA·h/g)和最佳的循环寿命(S100=92.82%). 合金电极的高倍率放电性能(HRD)随Mg含量的增加先减小再增大然后又减小, 适量的Mg元素改善了合金电极的动力学性能.  相似文献   

4.
许惠  钟辉 《无机化学学报》2006,22(10):1761-1765
研究了两种不同前驱体Ni(OH)2对LiCo0.3Ni0.7O2锂离子电池正极材料的结构与电化学性能的影响,并用XRD、SEM及电性能测试考察了材料的结构、形貌与电化学性能。结果表明,前驱体Ni(OH)2的形貌、结晶形态对LiCo0.3Ni0.7O2正极材料的性能有极大的影响。与目前镍酸锂合成需高密度球形镍前驱体Ni(OH)2认识不同,本文发现呈枝晶网络状结构、表面蓬松、比表面积高和振实密度低的前驱体Ni(OH)2具有较高的化学活性,可有效抑制产物LiCo0.3Ni0.7O2正极材料中阳离子混排产物的生成。由其制备的目标正极材料LiCo0.3Ni0.7O2显示出较优的电化学性能,首次放电容量为175 mAh·g-1,首次放电效率为93.9%,40次循环容量保持率为94.8%,显示较好的循环稳定性。  相似文献   

5.
采用溶胶-凝胶方法制备了正极材料LiNi0.5Co0.25Mn0.25O2。XRD、XPS测试结果表明:LiNi0.5Co0.25Mn0.25O2中阳离子排列有序度较高,层状结构明显;Co、Mn分别以+3、+4价形式存在,Ni以+2、+3价形式存在,且Ni2+与Ni3+的含量之比约为1∶1。SEM测试结果表明:正极材料LiNi0.5Co0.25Mn0.25O2结晶粒径较均匀。充放电测试结果表明:与LiCoO2相比,尽管LiNi0.5Co0.25Mn0.25O2的放电电压平台较低,但放电容量较高;在恒流充电模式下,当充电截止电压由4.35 V升高至4.75 V时,首次放电容量由179 mAh·g-1增至201 mAh·g-1,50次循环后,容量保持率由74.95%增至78.48%;在先恒流再恒压的充电模式下,电池首次放电容量为212 mAh·g-1,50次循环后,容量保持率提高到87.71%。循环伏安测试表明:在2.80~4.80 V扫描范围内,该正极材料发生Ni2+/Ni3+,Co3+/Co4+两对电化学反应。EIS测试表明:随着充电截止电压的增大,该正极材料的传荷电阻变小。  相似文献   

6.
利用XRD、SEM、EDS、BET、激光粒度、循环伏安、恒流充放电、交流阻抗方法研究了葡萄糖为碳源对溶胶凝胶法制备Li1.2Ni0.13Co0.13Mn0.54O2正极材料的结构、形貌以及电化学性能的影响。结果表明:与前驱体中未加入葡萄糖所制备的材料相比,掺葡萄糖后样品颗粒分布相对均匀,粒径变小,D50从11.56减小至9.94μm,比表面积增加近1倍。经0.05C充放电活化后,未掺葡萄糖和掺葡萄糖样品0.2C放电比容量分别为183.4、211.6mAh·g-1,2C容量分别为其0.2C的62.2%、77.6%。1C循环50次后放电比容量分别为133.3、173.6mAh·g-1,容量保持率分别为95.1%、100%。掺葡萄糖可降低首次不可逆容量损失,提高材料的倍率性能与循环稳定性,减少电荷传递阻抗、Warburg阻抗以及双电层弥散效应,但不改变材料的晶型结构。  相似文献   

7.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g~(-1)和215.8 m Ah·g~(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g~(-1)和106.2 m Ah·g~(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni~(2+)、Co~(3+)、Mn~(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

8.
通过共沉淀法高温固相反应在空气气氛中合成出具有P2型结构特征的碱青铜前驱体Na0.66Ni0.3Mn0.7O2,研究了在4种不同离子交换条件下进行离子交换反应得到目标正极材料LixNi0.3Mn0.7O2的离子交换规律,并用XRD、SEM、粒度分析和电性能测试考察了目标正极材料及其前驱体的结构、形貌和电化学性能。结果表明,以熔融LiNO3为介质于300 ℃离子交换4h反应进行得最为完全,离子交换率达98 %,且目标正极材料具有较完善的O2型层状结构,在2.6~2.9 V存在唯一的充放电平台,循环过程中未发现向尖晶石相转变;而离子交换时间过长,目标正极材料将出现尖晶石相而影响其放电容量和循环稳定性。  相似文献   

9.
采用水热法制备了Na_3V_2(PO_4)_2O_2F (NVPOF)钠离子电池正极材料,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电(GCD)等方法研究了其形貌、结构与电化学性能。结果显示,纯相NVPOF形貌规则,呈长1~3μm、宽300 nm~1μm、长宽比为2~3的四棱柱形貌。NVPOF具有2对平稳的充放电平台,在0.2C和2C电流密度下,放电比容量达到124.2和70.5 m Ah·g~(-1),经100次循环后,放电比容量仍有105.8和59.6 m Ah·g~(-1),容量保持率达到85.2%和84.5%,库仑效率基本在97%以上,且低温(0℃)电化学性能也有不错的表现。经还原氧化石墨烯(r GO)包覆提高电子电导率,NVPOF@r GO在0.5C和2C的室温放电比容量高达124.4和88.4 m Ah·g~(-1),且2C倍率下循环200圈后的比容量仍有78.7 m Ah·g~(-1),容量保持率高达89%,库仑效率始终保持在99%左右,显示出优异的倍率和循环性能。  相似文献   

10.
采用低温燃烧法合成了锂离子电池正极材料xLi2MnO3-(1-x)LiNi0.7Co0.3O2,对合成产物的结构、形貌和电化学性能进行了系统的研究, 通过单因素试验对合成条件和材料的组成进行了优化。结果表明:采用低温燃烧法合成的富锂层状正极材料具有α-NaFeO2型层状结构、球状形貌和良好的电化学性能;其最佳合成条件为:回火温度850℃, 回火时间20 h;Li2MnO3的最佳配比为x=0.7.在此条件下合成的0.7Li2MnO3-0.3LiNi0.7Co0.3O2,最高放电比容量达到263.1 mAh·g-1,并具有良好的循环性能和倍率性能。  相似文献   

11.
王萌  吴锋  苏岳锋  陈实 《物理化学学报》2008,24(7):1175-1179
通过在硝酸钇水溶液浸渍并焙烧的简单工艺, 在LiCo1/3Ni1/3Mn1/3O2材料表面包覆了一层Y2O3. 采用X射线衍射(XRD), 扫描电子显微镜(SEM), 透射电子显微镜(TEM), 循环伏安(CV)和恒流充放电对包覆和未包覆的LiCo1/3Ni1/3Mn1/3O2进行了测试分析. 结果表明, Y2O3包覆并没有改变LiCo1/3Ni1/3Mn1/3O2的晶体结构, 只存在于LiCo1/3Ni1/3Mn1/3O2的表面; 与未包覆的材料相比, Y2O3包覆后的材料在高电位下具有更好的容量保持率和放电容量. CV测试表明, 包覆层的存在有效抑制了材料层状结构的转变及电极与电解液的负反应.  相似文献   

12.
TiO2包覆对LiCo1/3Ni1/3Mn1/3O2材料的表面改性   总被引:1,自引:1,他引:0  
为了提高材料LiCo1/3Ni1/3Mn1/3O2的循环性能, 采用浸渍-水解法对其进行TiO2包覆. 用X射线衍射(XRD)、电化学交流阻抗谱(EIS)、电感耦合等离子体发射光谱(ICP-OES)和恒流充放电测试研究包覆材料的结构和电化学性能. TiO2仅在材料表面形成包覆层, 并未改变材料的结构. TiO2包覆能提高材料LiCo1/3Ni1/3Mn1/3O2的倍率性能和循环性能, TiO2包覆后的材料在5.0C(1.0C=160 mA·g-1)下的放电容量达到0.2C下的66.0%, 而包覆前的材料在5.0C下的放电容量仅为其0.2C下的31.5%. 包覆后的材料在2.0C下循环12周后的容量没有衰减, 而未包覆的材料容量保持率仅为94.4%. EIS测试表明包覆材料性能的提高是由于循环过程中材料的界面稳定性得到了提高. 循环后材料的XRD和ICP-OES测试表明, 包覆层能提高材料LiCo1/3Ni1/3Mn1/3O2的结构稳定性.  相似文献   

13.
TiO2包覆对LiCO1/3Ni1/3Mn1/3O2材料的表面改性   总被引:1,自引:0,他引:1  
为了提高材料LiCo1/3Ni1/3MnO2的循环件能,采用浸渍-水解法对其进行TiO2包覆.用X射线衍射(XRD)、电化学交流阻抗谱(EIS)、电感耦合等离子体发射光谱(ICP-OES)和恒流允放电测试研究包覆材料的结构和电化学性能.TiO2仅在材料表面形成包覆层,并未改变材料的结构.TiO2包覆能提高材料LiCo1/3Ni1/3Mn1/3O2的倍率性能和循环性能,TiO2包覆后的材料在5.0C(1.0C=160 mA·g-1)下的放电容量达到0.2C下的66.0%,而包覆前的材料在5.0C下的放电容量仅为其0.2C下的31.5%.包覆后的材料在2.0C下循环12周后的容最没有衰减,而未包覆的材料容量保持率仅为94.4%.EIS测试表明包覆材料性能的提高是由于循环过程中材料的界面稳定性得到了提高.循环后材料的XRD和ICP-OES测试表明,包覆层能提高材料LiCo1/3Ni1/3Mn1/3O2的结构稳定性.  相似文献   

14.
电解法制备锂离子电池正极材料LiCOxNi1-xO2   总被引:7,自引:1,他引:6  
合金;电解法制备锂离子电池正极材料LiCOxNi1-xO2  相似文献   

15.
LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The structures of the films were characterized with X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM) techniques. It was shown that the 700 ±C-annealed LiCo0.8M0.2O2 has an @-NaFeO2-like layered structure. All-solid-state thin-film batteries (TFBs) were fabricated with these films as the cathode and their electrochemical performances were evaluated. It was found that doping of electrochemically active Ni and inactive Zr has different effects on the structural and electrochemical properties of the LiCoO2 cathode films. Ni doping increases the discharge capacity of the film while Zr doping improves its cycling stability.  相似文献   

16.
采用高能球磨法通过不同球磨时间合成 xLiF-(Ni1/6Co1/6Mn4/6)3O4新型正极材料,并对材料进行石墨烯复合改性,提高其性能。结合X-射线衍射(XRD)、扫描电镜(SEM)、电化学性能测试和X-射线电子能谱(XPS)对xLiF-(Ni1/6Co1/6Mn4/6)3O4正极材料性能进行表征。研究表明,球磨24小时产物的放电容量最高,为157.3 mAh g-1。并且LiF与(Ni1/6Co1/6Mn4/6)3O4比例为1.5:1(x=1.5)时放电容量最高。此外正极材料添加石墨烯能改善材料的电化学性能,石墨烯复合量为20%,在室温、0.05 C(1C=250 mAh g-1)、1.5 -4.8 V下,材料首圈的放电比容量为235 mA hg -1,相较于无石墨烯的材料,在1 C和5 C倍率下,放电比容量分别为151和114 mAh g-1。同时分析了正极材料放电容量随截止电压的变化,确定了复合正极材料在高电压下有获得更高放电容量的潜力。  相似文献   

17.
用机械合金化法合成了Mg0·9Ti0·1Ni0·9X0·1(X=Mn,Zn,Co,Fe)系列合金.X射线衍射(XRD)结构分析表明,用X部分替代Ni后,促进了Mg0·9Ti0·1Ni合金的非晶化过程.用Co和Fe部分替代Ni提高了合金的放电容量,但却降低了合金的循环稳定性.用Zn和Mn部分替代Ni提高了合金电极的循环寿命,尤其是Mg0·9Ti0·1Ni0·9Zn0·1合金电极经10个充放电循环后,其放电容量仍可达到313·8mA·h/g.对添加Co后的合金进行p-c-T测试发现,Mg0·9Ti0·1Ni0·9Co0·1合金的吸放氢容量明显比Mg0·9Ti0·1Ni合金高,这与电化学所测到的结果一致.  相似文献   

18.
Ga2O3-NiO复合氧化物的溶胶-凝胶法制备和气敏性能   总被引:2,自引:0,他引:2  
用溶胶-凝胶法制备了Ga2O3-NiO复合金属氧化物气敏材料,对其相组成、电导和气敏性能作了研究.结果表明:镍镓物质的量比n(Ni2+) : n(Ga3+)=0.7~0.9:2、800 ℃下热处理4 h,得到纯相尖晶石型复合金属氧化物NiGa2O4.缺陷GaNi×的反应(GaNi×→GaNi’+h●),使NiGa2O4呈p型半导体. n(Ni2+) : n(Ga3+)=1:2凝胶粉在800 ℃下热处理4 h,所得纳米微粉制作的元件在313 ℃工作温度下对C2H5OH有较高灵敏度和良好的选择性.  相似文献   

19.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05)正极材料. 循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V, 电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266 Ω减小到102 Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定, 其第二周的放电比容量为176.2 mAh·g-1, 循环100周后容量几乎没衰减; 高温(55 °C)下充放电循环100周, 其放电比容量平均每周仅衰减0.20%, 远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%; Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1, 高于其他两种正极材料. 电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗, 增大了锂离子扩散系数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号