首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The mechanism of water photooxidation reaction at atomically flat n-TiO(2) (rutile) surfaces was investigated in aqueous solutions of various pH values, using photoluminescence (PL) measurements. The PL bands, which peaked at around 810 and 840 nm for the (110) and (100) surfaces, respectively, were assigned to radiative transitions between conduction-band electrons and surface-trapped holes (STH), [Ti-O=Ti(2)](s)+, formed at triply coordinated (normal) O atoms at the surface lattice. The PL intensity (I(PL)) decreased stepwise with increasing solution pH, namely, it sharply decreased at around pH 4, near the point of zero charge of TiO(2) (about 5), and then rapidly decreased to zero near pH 13. The first sharp decrease around pH 4 is attributed to the increased rate of nucleophilic attack of a water molecule to a hole at a site of surface bridging oxygen (Ti-O-Ti), the density of which increases with increasing pH. The nucleophilic attack is regarded as the main initiating step of the water oxidation reaction in low and intermediate pH. The high PL intensity at low pH is ascribed to slow nucleophilic attack owing to a very low density of Ti-O-Ti by its protonation at the low pH. The second sharp decrease near pH 13 is attributed to formation of surface anionic species like Ti-O- which can be readily oxidized by photogenerated holes. Interrelations between reaction intermediates proposed in this work and those reported by time-resolved laser spectroscopy are discussed.  相似文献   

2.
The success in preparing atomically smooth and stable (110) and (100) TiO2 (rutile) surfaces, combined with in situ photoluminescence (PL) and photocurrent measurements as well as atomic force microscopic (AFM) inspection, has enabled us to make systematic studies on molecular mechanisms of oxygen photoevolution and related processes on TiO2 (rutile), which are important for solar water splitting and photocatalytic environmental cleaning. The studies have revealed that various surface processes and properties, such as the flat-band potential (Ufb), the spectrum and intensity of the PL from a precursor of the oxygen photoevolution reaction, and photoinduced surface roughening, have all strong dependences on the atomic-level structure of the TiO2 surface. Importantly, all the results have been explained on the basis of our recently proposed new mechanism that the oxygen photoevolution reaction is initiated by a nucleophilic attack of an H2O molecule to a surface-trapped hole, thus giving confirmative evidence to it. The molecular mechanisms for photoinduced primary processes at the TiO2 surface, clarified in the present work, will provide a typical model for photoreactions on metal oxides in contact with aqueous solutions.  相似文献   

3.
Wet chemical cleaning of silicon is a critical step, e.g., pre-gate clean, in the semiconductor manufacturing[1]. For example, pre-gate oxide cleaning demands ultra-clean silicon surface with least surface roughness. It is well known that metallic infinities and roughness cause the lower breakdown voltage in gate dielectric[2]. It has stringent requirements for ultra-clean and atomically flat silicon surface as the thickness of gate oxide is decreasing. In the present work, we have extended our study on Si(100) surface13] and extensively investigated wet chemical cleaning of Si(111) and Si(100) surfaces in NH4F-based solutions by using scanning tunneling microscopy (STM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and total reflection X-ray fluorescence spectrometry (TXRF). Surface roughness, organic contamination, metallic impurities and surface termination on the silicon surfaces after wet chemical cleaning with various NH4F-based solutions have been determined and compared with those treated with RCA cleans, HF solutions and other industrially used solutions. Our results indicate that ultra-clean and smooth Si(111) and Si(001) surfaces are obtained by treatment with NH4F-based solutions.  相似文献   

4.
The creation of a highly enhanced electromagnetic (EM) field underneath a scanning tunneling microscope (STM) tip enables Raman spectroscopic studies of organic submonolayer adsorbates at atomically smooth single crystalline surfaces. To study the sensitivity of this technique, tip-enhanced resonance Raman (TERR) spectra of the dye malachite green isothiocyanate on Au(111) in combination with the corresponding STM images of the probed surface region were analyzed. The detection limit for unambiguous identification of the dye and semiquantitative determination of the surface coverage reaches < or =0.7 pmol/cm(2), or approximately five molecules present in the enhanced-field region, which is confirmed by STM images. Because of well-defined adsorption sites at atomically smooth Au(111) surfaces, no variation in band positions or relative band intensities was observed at the single- or few-molecule detection level when employing TERR spectroscopy.  相似文献   

5.
Chemical surface passivation of Ge nanowires   总被引:4,自引:0,他引:4  
Surface oxidation and chemical passivation of single-crystal Ge nanowires with diameters ranging between 7 and 25 nm were studied. The surface chemistry differs significantly from that of well-studied monolithic atomically smooth single-crystal substrates. High-resolution Ge 3d XPS measurements reveal that Ge nanowires with chemically untreated surfaces exhibit greater susceptibility to oxidation than monolithic Ge substrates. Multiple solution-phase routes to Ge nanowire surface passivation were studied, including sulfidation, hydride and chloride termination, and organic monolayer passivation. Etching in HCl results in chloride-terminated surfaces, whereas HF etching leads to hydride termination with limited stability. Exposure to aqueous ammonium sulfide solutions leads to a thick glassy germanium sulfide layer. Thermally initiated hydrogermylation reactions with alkenes produce chemically stable, covalently bonded organic monolayer coatings that enable ohmic electrical contacts to be made to the nanowires.  相似文献   

6.
Simple polishing and relatively low temperature annealing procedures for preparing atomically flat terraced surfaces of various single-crystal TiO2 polymorphs are described. Anatase (101), anatase (001), rutile (100), rutile (110), and brookite (111) surfaces could all be prepared with a terraced surface structure as revealed in AFM images. The rutile (100) and (110) and anatase (101) surfaces were also shown to produce acceptable LEED patterns immediately upon insertion into a UHV system without the usual sputter and anneal cycles.  相似文献   

7.
Two different approaches under ambient conditions were developed for the preparation of clean, non-reconstructed, single crystalline ZnO(0001)-Zn surfaces. The surface preparation by a wet chemical etching procedure was compared with the same treatment in combination with a subsequent heat treatment in humidified oxygen atmosphere. Depending on the preparation technique, atomically flat terraces with a width of 100 nm to several micrometers were observed using an atomic force microscope (AFM). The obtained surface structures were further characterized by means of angle resolved X-ray photoelectron spectroscopy (AR-XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) measurements. Based on these results it is shown that the obtained surfaces are, in contrast to surfaces prepared under UHV conditions, stabilised by the adsorption of a monolayer of hydroxides. The important role of H(2)O during the heat treatment is pointed out by comparing the results of the same heat treatment in the absence of water. H(2)O turned out to play an important role in the reorganization process of the surface at elevated temperatures, thereby yielding extremely large atomically flat terraces. The terminating edges of these terraces were found to include 120 degrees and 60 degrees angles, thus perfectly reflecting the hexagonal surface structure.  相似文献   

8.
The friction and lateral stiffness of the contact between an atomic force microscopy (AFM) probe tip and an atomically flat dolomite (104) surface were investigated in contact with two aqueous solutions that were in equilibrium and supersaturated with respect to dolomite, respectively. The two aqueous solutions yielded negligible differences in friction at the native dolomite-water interface. However, the growth of a Ca-rich film from the supersaturated solution, revealed by X-ray reflectivity measurements, altered the probe-dolomite contact region sufficiently to observe distinct friction forces on the native dolomite and the film-covered surface regions. Quantitative friction-load relationships demonstrated three physically distinct load regimes for applied loads up to 200 nN. Similar friction forces were observed on both surfaces below 50 nN load and above 100 nN load. The friction forces on the two surfaces diverged at intermediate loads. Quantitative measurements of dynamic friction forces at low load were consistent with the estimated energy necessary to dehydrate the surface ions, whereas differences in mechanical properties of the Ca-rich film and dolomite surfaces were evidently important above 50 nN load. Attempts to fit the quantitative stiffness-load data using a Hertzian contact mechanical model based on bulk material properties yielded physically unrealistic fitting coefficients, suggesting that the interfacial contact region must be explicitly considered in describing the static and dynamic contact mechanics of this and similar systems.  相似文献   

9.
The nanotribological responses of a series of nonionic polyoxyethylene surfactants (Tween 20, Tween 40, Tween 60, and Tween 80) were investigated after they were adsorbed from aqueous solution onto atomically smooth hydrophobic substrates. The hydrophobic surfaces were composed of a condensed monolayer of octadecyltriethoxysilane (OTE; contact angle theta>110 degrees ). The nanorheological measurements were performed using a modified surface forces apparatus after coating atomically smooth mica with these OTE monolayers, while adsorption measurements were performed using phase-modulated ellipsometry on silicon wafers coated with these same monolayers. The minimum surface-surface separation observed under high load in friction studies agreed quantitatively with the thickness obtained from ellipsometry. For Tweens 20, 40, and 60, the thickness of the adsorbed film increases with increasing alkyl chain length. Systematic investigations of the nanorheological response showed that there is a "solid-like" elastic response from confined surfactant layers, which is the case for the smallest separations to separations up to slightly larger than twice the adsorbed film thickness. In kinetic friction, these confined layers are characterized by a shear stress of approximately 3 MPa with minimal dependence on shear rate. The magnitude of the sliding shear stress is the same as the apparent yield stress at approximately 3 MPa; it is independent of alkyl chain length within the Tween family of surfactants and corresponds to a nominal friction coefficient of mu approximately 1. A similar friction coefficient is observed for boundary lubrication on the macroscopic scale in a tribometer utilizing hydrophobic surfaces and mu approximately 1.1 for Tweens 20, 40, and 60. These results suggest that while Tween molecules adsorb onto hydrophobic surfaces to form a robust separating layer, the lubricating properties of these layers are dominated by a highly dissipative slip plane, the same for all alkyl chain lengths.  相似文献   

10.
Electroless deposition of Ag on atomically flat H-terminated Si(111) surfaces in aqueous alkaline solutions containing Ag ions produced two different sizes of Ag nanowires along atomic step edges: (1) a narrow nanowire of 10 nm in width and 0.5 nm in height and (2) a wide nanowire of 35 nm in width and 11 nm in height. The narrow and wide nanowires were formed by immersion in the solutions containing less than 1 ppb and 8 ppm dissolved-oxygen concentrations, respectively. This result indicates that the dissolved oxygen initiates the formation of Ag nucleation sites and that the fabrication method has a possibility of controlling the size of Ag nanowires.  相似文献   

11.
Herein, we investigated the surface of an (La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT) single crystal via scanning transmission electron microscopy (STEM) after annealing in air. We found amorphous mounds and atomically flat surfaces formed on the surface of the (100) LSAT single crystal subsequent to heat treatment. These surface mounds mainly constituted SrO, including ~50 at.% Al. The atomically flat surface showed a B-site termination determined by the direct surface observation at the atomic scale through HAADF-STEM. The atomic arrangements on the surface were accommodated by surface-mound formation and La evaporation. Consequently, the ordered structure disappeared because of the increase in the Ta content at the terminated B-site layer.  相似文献   

12.
制备并表征了原子分散的模型体系:氧化铈负载的Pt-Co核壳催化剂.采用超高真空物理气相沉积法制备了有序CeO2(111)膜上的Pt@Co和Co@Pt核壳纳米结构,并用同步辐射光电子能谱和共振光发射光谱对其进行了研究.在低Co覆盖率(0.5 ML)下Co在CeO2(111)上沉积生成Co-CeO2(111)固溶体,然后在更高Co覆盖率下生长为金属Co纳米粒子.Pt@Co和Co@Pt两种模型结构在300-500 K温度范围内都能稳定地抗烧结.在500 K退火后, Pt@Co纳米结构含有接近纯的钴壳,而Co@Pt中的铂壳部分被金属钴覆盖.在550 K以上,在Pt@Co和Co@Pt纳米结构中近表面区域的重新排序中产生了次表层的Pt Co合金和富铂外壳.对于Co@Pt纳米粒子,近表面区域的化学有序性取决于沉积铂壳的初始厚度.无论初始铂壳的厚度如何,在有氧存在下对Co@Pt纳米结构进行退火,都会导致Pt-Co合金的分解以及Co的氧化.Co的逐步氧化与吸附质诱导的Co偏析共同导致在负载的Co@Pt纳米结构表面形成厚的Co O层.这一过程伴随着CeO2(111)薄膜的裂解,以及在550K以上氧气中退火后CeO2包裹氧化的Co@Pt纳米结构.很明显,于不同温度下在氧气和氢气的氧化-还原循环过程中,无论铂的初始厚度是多少,负载的Co@Pt纳米颗粒的结构和化学成分的变化主要是由氧化所致,而还原处理的影响则很小.  相似文献   

13.
Textured surfaces consisting of nanometer- to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution-cast onto silica. The particle textured ionomer surfaces were prepared by either spin-coating or solution-casting ionomer solutions at controlled evaporation rates. The effects of the solvent used to spin-coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation on the surface morphology of cast films were investigated. The surface morphologies were consistent with a spinodal decomposition mechanism, where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted separation from the surface even after annealing at 120 °C for 1 week. The water contact angles on as-prepared surfaces were relatively low, ~90°, due to the polar groups in the ionomer, but when the surface was modified by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~109° on smooth surfaces and up to ~140° on the textured surfaces. Although the surfaces were hydrophobic, the contact angle hysteresis was relatively high and water droplets stuck to these surfaces even when the surface was turned upside down.  相似文献   

14.
Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Methacrylic acid (MA), a functionalization agent that can chemically link TiO2 nanomaterials (n-TiO2) and polymer matrix, was used to modify the surface of n-TiO2 using a Ti-carboxylic coordination bond. Then, the double bond in MA was copolymerized with methyl methacrylate (MMA) to form a n-TiO2-PMMA nanocomposite. The resulting n-TiO2-PMMA nanocomposite materials were characterized by using thermal analysis, electron microscopy, and elemental analysis. The dynamic mechanical properties (Young's and shear modulus) were measured using an ultrasonic pulse technique. The electron microscopy results showed a good distribution of the nanofillers in the polymer matrix. The glass transition temperature, thermal degradation temperature, and dynamic elastic moduli of the nanocomposites were shown to increase with an increase in the weight percentage of nanofibers in the composite. The resulting nanocomposites exhibited improved elastic properties and have potential application in dental composites and bone cements.  相似文献   

15.
Surface-initiated grafting of N,N-dimethylacrylamide, styrenesulfonate (SS), and (ar-vinylbenzyl)trimethylammonium chloride (VBTAC) from microwave plasma carboxylated, initiator-functionalized poly(dimethylsiloxane) (PDMS) surfaces was accomplished utilizing reversible addition-fragmentation chain transfer (RAFT) polymerization. Surface spectroscopic attenuated total reflectance (ATR) FT-IR analysis and atomic force microscopy (AFM) measurements were utilized to determine surface grafting and morphological surface features. The VBTAC-grafted PDMS provided a smooth, hydrophilic cationic surface for creating layer-by-layer (LBL) surfaces via alternating deposition of well-defined poly(SS) and poly(VBTAC), also prepared via aqueous RAFT. Comparisons of the ATR FT-IR spectra of the LBL assemblies and those of respective anionic poly(SS) and cationic poly(VBTAC) components confirmed strong electrostatic complexation of a fraction of the sulfonate and quarternary ammonium species in the layers as well as the existence of noncomplexed species. AFM images of surface topology indicated the presence of domains, likely phase-separated segments of the respective homopolymers, as well as interlayer mixing. The employed LBL methodology results in formation of stable, highly hydrophilic surfaces on a PDMS substrate. To our knowledge, this is the first study that illustrates surface functionalization of PDMS using microwave plasma and RAFT polymerization, followed by LBL deposition of polyelectrolytes.  相似文献   

16.
High‐quality atomically flat substrates are critical for the analysis and imaging of surface‐mounted ultrathin films and nanostructures. Here we report significant improvement in the preparation of large areas of atomically smooth Au(111) substrates. A thin layer of gold on silicon is flame‐annealed in air and then stripped from the template. The substrates were analyzed with X‐ray diffraction and high‐resolution atomic force microscopy (AFM). In contrast to the previously reported template stripped gold (TSG) substrates, flame‐annealed template stripped substrates reveal no detectable pinholes. The substrate surface is atomically smooth with most grains being larger than 1 µm2. The entire procedure requires less than 2 h and uses readily available materials and common laboratory equipment. The resulting substrates can be stored for longer periods of time and then used immediately without need for common cleaning procedures. Evidence is provided that self‐assembled monolayers on these substrates are higher quality than those prepared with previously reported gold substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
InP(100) surfaces treated with Na2Sx9H20 and CnH(2n+1)SH are examined by contact angle measurement, X-ray photoelectron spectroscopy, and atomic force microscopy to determine the chemical and thermal behavior of these passivated surfaces. The surfaces coated by octadecanethiol (n = 18) self-assembled monolayers (SAMs) are found to be more stable toward oxidation than the S-passivated surface. The chemical stability of octadecanethiol SAMs in various environments is examined. The thiol monolayer is found to be stable in 0.1 M HCl but degrades in 0.1 M NaOH, boiling chloroform, and water. The behavior of these surfaces at elevated temperatures under a vacuum is also investigated. The octadecanethiol-coated InP(100) is stable up to 473 K, above which the films begin to degrade. Unlike other substrates on which the entire molecule including the sulfur headgroup desorbs together, on InP, the sulfur headgroup remains on the surface even after annealing to 673 K. These observations suggest that the desorption occurs by S-C bond cleavage as well as In-S bond cleavage. The sulfur of S-passivated InP is found to be more thermally stable than that of the octadecanethiol monolayer, perhaps due to their different bonding geometries and hence energies.  相似文献   

18.
Thin films of hydroxyl (POH) and carboxyl (PCOOH) terminated aromatic hyperbranched polyesters (HBPs) were prepared by spin coating on silicon wafers and subsequently annealed above their glass transition temperature (Tg). The surface properties and the swelling behaviour of these films in aqueous buffer solutions were studied as a function of annealing time using contact angle measurements and ellipsometry. Non-annealed films were hydrophilic with surface free energies of 51 mJ/m2 for POH and 49 mJ/m2 for PCOOH, respectively. The swelling behaviour of the polymer films in buffer solution with pH 7.4 was described in terms of changes of the thickness and effective refractive index of the swollen layer. Under identical conditions a lower water uptake was found for hydroxyl terminated HBPs (POH) which were annealed more then 2 h. The lower water uptake correlates with the surface properties of the films. The annealed films were less hydrophilic. Their surface free energy was 38 mJ/m2 independent of the annealing. Films of carboxyl terminated HBPs (PCOOH) showed similar surface properties after annealing. However, these films were unstable under the same conditions in aqueous solutions. Stable PCOOH films were obtained by additional covalent binding to the substrate using an epoxy silane as a coupling agent.  相似文献   

19.
Voltammograms for electrodes containing nanostructured carbon of various morphology (single-walled carbon nanotubes, filament, columnar structures) are obtained in neutral aqueous electrolytic solutions. Experimental proofs for the existence of injection of solvated electrons into electrolytic solutions at moderate cathodic potentials are presented for all the electrodes. It is established that this effect is connected with the presence of atomically sharp areas on the electrode surfaces. It is assumed that the reason for the appearance of solvated electrons is the autoelectron emission at the interface between the conducting surface of the carbon material and the electrolytic solution. By studying the nitrate anion reduction it is shown that the reduction over-voltage of stable compounds may be lowered by substituting a fast homogeneous reaction of solvated electrons with the initial substance for the hindered heterogeneous stage of the first electron transfer.  相似文献   

20.
Physico-chemical properties of Chitosan films   总被引:1,自引:0,他引:1  
Chitosan films obtained by dry phase inversion were prepared from an aqueous solution of chitosan in acetic acid. The films, of thickness less than 20 μm, were transparent, very flexible and had smooth surfaces. Increasing the film thickness induced an increase of the internal tensions and the consequent formation of a rough surface. Structural investigations by X-ray diffraction and Fourier transform IR analysis, showed that the chitosan films, as prepared, are amorphous. Further annealing to evaporate acetic acid and water traces, changed the amorphous phase into a more ordered phase, characterized by diffraction peaks at 2θ values of 9, 17, 20 and 23 degrees. Thermal investigations by TG, DTG, and DTA revealed that the decomposition of the chitosan films as prepared proceeds in two stages, starting from 180°C and 540°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号