首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermotropic phase behaviors of paeonol-encapsulated liposomes containing stigmasterol or cholesterol have been investigated by differential scanning calorimetry. We compared the thermotropic phase behavior of pure dipalmitoylphosphatidylcholine (DPPC) liposomes, sterol/DPPC liposomes, and paeonol/sterol/DPPC liposomes increasing the ratio of paeonol to sterol from 0 to 1, by analyzing the calorimetric parameters of main phase transition of liposomes including phase transition temperature (onset temperature and peak temperature) and phase transition cooperativity. The results showed that paeonol could incorporate into the hydrophobic region of DPPC, thus, decrease phase transition temperature of DPPC. Though stigmasterol interacts with DPPC less favorably than cholesterol, thermotropic phase behavior of paeonol/cholesterol/DPPC liposomes and that of paeonol/stigmasterol/DPPC liposomes are very similar. A phase separation occurred when the molar ratio of paeonol to sterol reached 1:1 in paeonol-encapsulated liposomes, where a paeonol-rich domain coexisted with a sterol-rich domain. The packing order of acyl chains of DPPC in sterol-rich domain is a little higher than that in paeonol-rich domain.  相似文献   

2.
The differential scanning calorimetry (DSC) and the freeze-fracture electron microscopy of dipalmitoyl phosphatidylcholine (DPPC) liposomes containing distearoyl-N-monomethoxy poly(ethylene glycol)-succinyl-phosphatidylethanolamines (PEG-DSPE) were carried out. The DSC peak of DPPC liposomes containing PEG-DSPE had a shoulder. The main phase transition temperature of DPPC bilayer membranes containing PEG-DSPE whose molecular weight of PEG is less than 3000 was slightly shifted to a higher temperature, while that containing PEG-DSPE whose molecular weight of PEG is more than 5000 was slightly shifted to a lower temperature. The electron micrographs of freeze-fracture replicas of DPPC liposomes containing PEG-DSPE quenched from 37±2°C exhibited banded and planar textures, suggesting the lateral phase separation in the bilayer membranes.  相似文献   

3.
The effect of plasma components on the temperature-dependent content release property of thermosensitive liposomes has been described. Temperature-sensitive liposomes containing mitomycin C (MMC) were prepared from dipalmitoylphosphatidylcholine (DPPC liposomes) and a 7 : 3 mixture of DPPC and dipalmitoylophosphatidylglycerol (DPPC/DPPG liposomes). We defined in this study the difference in the content release between 38 degrees C and 44 degrees C as an index of the temperature-dependent content release efficiency (Delta% release). In the absence of rat plasma, the Delta% release of the DPPC liposomes and the DPPC/DPPG liposomes was 83% and 71%, respectively. However, when the release study was conducted with rat plasma, the Delta% release increased to about 96% for both liposomes. In addition, while the DPPC liposomes were destabilized by rat plasma below the gel-to-liquid crystalline phase transition temperature (T(m)), MMC leakage from the DPPC/DPPG liposomes below T(m) was suppressed by rat plasma. Moreover, the plasma protein binding onto lipid bilayer was concomitant with the gel-to-liquid crystalline phase transition and then enhanced the temperature-dependent release from the DPPC/DPPG liposomes. The possible mechanism of interaction between liposomes and plasma proteins, especially serum albumin, was discussed based on differential scanning calorimetry and protein binding experiments.  相似文献   

4.
Gold nanoparticles were loaded in the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Above the gel to liquid-crystalline phase transition temperature, membrane fluidities of DPPC liposomes were changed by loading the gold nanoparticles. Compared with liposomes without loading the gold nanoparticles, gold-loaded liposomes showed the lower fluorescence anisotropy values. That is, the membrane fluidities of DPPC bilayer were increased by loading the gold nanoparticles. The membrane fluidities were increased as the amount of gold nanoparticles increased. The existence of gold nanoparticles in the DPPC bilayer was observed by transmission electron microscopy. Through the energy dispersive X-ray spectrometer, the particles in DPPC bilayer were confirmed to be gold nanoparticles.  相似文献   

5.
To understand more fully the effect of polyunsaturated fatty acids (PUFAs) on lipid bilayers, we investigated the effects of treatment with fatty acids on the properties of a model membrane. Three kinds of liposomes comprising dipalmitoylphosphatidylcholine (DPPC), dioleylphosphatidylcholine (DOPC), and cholesterol (Ch) were used as the model membrane, and the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and detergent insolubility were determined. Characterization of the liposomes clarified that DPPC, DPPC/Ch, and DPPC/DOPC/Ch existed as solid-ordered phase (L beta), liquid-ordered phase (l o), and a mixture of l o and liquid-disordered phase (L alpha) membranes at room temperature. Treatment with unsaturated fatty acids such as oleic acid (OA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) markedly decreased the fluorescence anisotropy value and detergent insolubility. PUFAs and OA had different effects on the model membranes. In DPPC liposomes, the most prominent change was induced by PUFAs, whereas, in DPPC/Ch and DPPC/DOPC/Ch liposomes, OA had a stronger effect than PUFAs. The effect of PUFAs was strongly affected by the amount of Ch in the membrane, which confirmed a specific effect of PUFAs on the Ch-poor membrane domain. We further explored the effect of fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted on the membranes even when incorporated in emulsion form. These findings suggest that treatment with PUFAs increases the segregation of ordered and disordered phase domains in membranes.  相似文献   

6.
Steady-state emission spectroscopy of 1-anilino-8- naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy, and DSC methods were used to characterize the interactions of the newly synthesized 1-carba-alpha-tocopherol (CT) with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane. The DSC results showed significant perturbations in the DPPC structure for CT concentrations as low as 2 mol%. The main phase transition peak was broadened and shifted to lower temperatures in a concentration-dependent manner, and pretransition was abolished. Increasing CT concentrations induced the formation of new phases in the DPPC structure, leading to melting at lower temperatures and, finally, disruption of the ordered DPPC structure. Hydration and structural changes of the DPPC liposomes using ANS and DPH fluorescent probes, which are selectively located at different places in the bilayer, were studied. With the increased concentration of CT molecules in the DPPC liposomes, structural changes with the simultaneous formation of different phases of such mixture were observed. Temperature studies of such mixtures revealed a decrease in the temperature of the main phase transition and fluidization at decreasing temperatures related to increasing hydration in the bilayer. Contour plots obtained from concentration–temperature data with fluorescent probes allowed for identification of different phases, such as gel, ordered liquid, disordered liquid, and liquid crystalline phases. The CT molecule with a modified chromanol ring embedded in the bilayer led to H-bonding interactions, expelling water molecules from the interphase, thus introducing disorder and structural changes to the highly ordered gel phase.  相似文献   

7.
The effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the membrane characteristics of liposomes were investigated by differential scanning calorimetry (DSC), freeze-fracture electron microscopy (FFEM), fluorescence polarization measurement and permeability measurement using carboxyfluorescein (CF). PEG-liposomes were prepared from mixtures of dipalmitoyl phosphatidylcholine (DPPC) and distearoyl phosphatidylethanolamines with covalently attached PEG molecular weights of 1000, 2000, 3000 and 5000 (DSPE-PEG). DSC and FFEM results showed that the addition of DSPE-PEG to DPPC in the preparation of liposomes caused the lateral phase separation both in the gel and liquid-crystalline states. The fluidity in the hydrocarbon region of liposomal bilayer membranes was not significantly changed by the addition of DSPE-PEG, while that in the interfacial region was markedly increased. From these results, it was anticipated that the CF leakage from PEG-liposomes is accelerated compared with DPPC liposomes. However, CF leakage from liposomes containing DSPE-PEG with a 0.060 mol fraction was depressed compared with regular liposomes, and the leakage decreased with increasing PEG chain length. Furthermore, the CF leakage from liposomes containing DSPE-PEG with a 0.145 mol fraction was slightly increased compared with that of liposomes containing DSPE-PEG with a 0.060 mol fraction. It is suggested that the solute permeability from the PEG-liposomes was affected by not only properties of the liposomal bilayer membranes such as phase transition temperature, phase separation and membrane fluidity, but also the PEG chain of the liposomal surface.  相似文献   

8.
The interactions of the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC) in 0.1 M NaCl (pH 7.4) with membranes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) and mixtures of DPPC and DPPG at molar ratios of 3:1 and 1:1 were studied by means of high-sensitivity isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and differential scanning calorimetry (DSC). The partition coefficients and the transfer enthalpies for the incorporation of bile salt molecules into the phospholipid membranes were determined by ITC. The vesicle-to-micelle transition was investigated by ITC, DLS, and DSC. The phase boundaries for the saturation of the vesicles and their complete solubilization established by ITC were in general agreement with DLS data, but systematic differences could be seen due to the difference in detected physical quantities. Electrostatic repulsion effects between the negatively charged bile salt molecules and the negatively charged membrane surfaces are not limiting factors for the vesicle-to-micelle transition. The membrane packing constraints of the phospholipid molecules and the associated spontaneous curvature of the vesicles play the dominant role. DPPG vesicles are transformed by the bile salts into mixed micelles more easily or similarly compared to DPPC vesicles. The saturation of mixed DPPC/DPPG vesicles requires less bile salt, but to induce the solubilization of the liposomes, significantly higher amounts of bile salt are needed compared to the concentrations required for the solubilization of the pure phospholipid systems. The different solubilization behavior of DPPC/DPPG liposomes compared to the pure liposomes could be due to a specific "extraction" of DPPG into the mixed micelles in the coexistence region.  相似文献   

9.
In the present study, the effects of an amphiphilic polymer, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on model surfactant monolayers dipalmitoylphosphatidylcholine (DPPC), a binary mixture of DPPC with palmitoyloleoyl phosphatidylglycerol (DPPC-POPG) 9:1 (w/w) and binary mixture of DPPC and oleic acid (DPPC-OA) were evaluated. The ability of TPGS to act as an antioxidant adjuvant for pulmonary surfactants was also evaluated. Compression isotherms of surfactant monolayers at 37 °C in a Langmuir-Blodgett trough showed that DPPC and DPPC:TPGS mixed monolayers (1:0.25-1:1, w/w) exhibited low minimum surface tensions (MST) of 1-2 mN/m. Similarly [DPPC:POPG (9:1, w/w)]:TPGS mixed films of 1:0.25-1:1 weight ratios reached 1-2 mN/m MST. DPPC:POPG:TPGS liposomes adsorbed to surface tensions of 29-31 mN/m within 1s. While monolayers of DPPC:OA (1:1, w/w) reached high MST of ~11 mN/m, DPPC:OA:TPGS (1:1:0.25, w/w) film reached near zero MST suggesting that low concentrations of TPGS reverses the effect of OA on DPPC monolayer. Capillary surfactometer studies showed DPPC:TPGS and [DPPC:POPG (9:1, w/w)]:TPGS liposomes maintained 84-95% airway patency. Fluorescence spectroscopy of Laurdan loaded DPPC:TPGS and DPPC:POPG:TPGS liposomes revealed no segregation of lipid domains in the lipid bilayer. Addition of TPGS to soybean liposome significantly reduced thiobarbituric acid reactive substance (TBARS) by 29-39% confirming its antioxidant nature. The results suggest a potential use of TPGS as an adjuvant to improve the surfactant activity as well as act as an antioxidant by scavenging free radicals.  相似文献   

10.
The aim of this study is to encapsulate two drugs: 5-fluorouracil (5-FU) with the hydrophobic properties and 1-β-D-arabinofuranosylcytosine (Ara-C) with the amphiphilic properties into liposomes prepared by the modified reverse-phase evaporation method (mREV) from L-α-phosphatidylcholine dipalmitoyl (DPPC). We studied the thermotropic phase behavior of liposome entrapped 5-FU and Ara-C. It is known that the stability of liposomes depends not only on the method of chemical gradient loading, the use of membrane stabilizer such as sterols, but also on the phase transition temperature (T c) of phospholipids, which undergoes an alteration after encapsulation of drugs to liposomes. The competition of these two drugs entrapped in liposomes was analyzed by the use of two spectroscopies: 1H NMR and UV on the basis of the analysis of the signals of each drug in the liposome—drug system. The percent of encapsulation in DPPC/Ara-C/5-FU liposome obtained by the use of UV spectroscopy amounted 93.84 and 96.05% for 5-FU and Ara-C, respectively. Phase transition temperature T c of liposomes containing Ara-C did not significantly change while for the liposomes containing 5-FU it increased in comparison with T c of the reference liposomes formed from DPPC.  相似文献   

11.
The influence of La(3+) on the colloidal stability of liposomes made up by two zwitterionic phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-[16-fluoropalmitoyl-phosphatidylcholine (F-DPPC), in aqueous media has been investigated by dynamic light scattering and electrophoretic mobility. The critical aggregation concentration (c.a.c.) of La(3+) for F-DPPC and DPPC liposomes were experimentally obtained, and the results were compared with theoretical predictions using the Derjaguin-Landau-Verwey-Overbeek theory. In order to evaluate the influence of the state of the bilayer on the stability of liposomes, all experiments were performed at temperatures below and above the chain-melting phase-transition temperature of lipids (transition temperature of lipids). Changes in the size of both types of liposomes and high values of polydispersity in the presence of La(3+) showed that these ions induce aggregation of liposomes at 25 °C and at 60 °C. At 25 °C, when the bilayer of F-DPPC liposomes is interdigited, DPPC liposomes are more resistant to aggregation than the liposomes formed with F-DPPC. However, this difference disappears at 60 °C, when both bilayers have the same conformation. The experimental results also indicate that the c.a.c. is higher at 60 °C than at 25 °C for both types of liposomes. In fact, it has been observed by dynamic light scattering measurements that aggregation of liposomes at 25 °C can be prevented by increasing the solution temperature for La(3+) concentrations near to the c.a.c. Moreover, the behavior of these liposomes in the presence of the ion was studied at temperatures above and below the transition temperature of the phospholipids.  相似文献   

12.
The thermodynamics of partitioning of benzocaine (BZC) were studied in octanol/buffer (ROH/W), isopropyl myristate/buffer (IPM/W), cyclohexane/buffer (CH/W), and dimyristoyl phosphatidylcholine (DMPC) and dipalmitoyl phosphatidylcholine (DPPC) liposome systems. In all cases the partition coefficients were greater than unity; therefore the free energies of transfer were negative, that is, the processes of transfer of BZC from aqueous media to organic systems were spontaneous. The partition coefficients were approximately three-fold higher in DMPC liposomes compared with the ROH/W system in the 30 degrees -40 degrees C temperature range. The enthalpies of transfer from aqueous media to ROH and IPM were negative, but positive for CH, while this property was negative for DMPC liposomes and positive for DPPC liposomes. The entropies of transfer were positive in almost all cases, except for DMPC. The results presented here confirm the lipophilic nature of BZC.  相似文献   

13.
The interaction of cyclodextrins (CDs) with L-alpha-dipalmitoyl phopsatidyl choline (DPPC), L-alpha-distearoyl phosphatidyl choline (DSPC), and L-alpha-dimyristoyl phosphatidyl choline (DMPC) unilamellar liposomes was investigated by the leakage of carboxylfluorescein (CF) entrapped in the inner aqueous phase of liposomes, at 25 degrees C (DPPC and DSPC liposomes) and at 5 degrees C (DMPC liposomes). The efficiency of CDs for CF leakage was remarkable in the order of heptakis (2,6-di-O-methyl)-beta-CD (DOM-beta-CD) > alpha-CD > heptakis (2,3,6-tri-O-methy)-beta-CD (TOM-beta-CD) from DPPC liposomes, in the order of DOM-beta-CD > TOM-beta-CD > alpha-CD from DSPC liposomes and in the order of alpha-CD > DOM-beta-CD > TOM-beta-CD from DMPC liposomes. The other CDs used in the present studies, beta-CD, 2-hydroxylpropyl beta-CD, and gamma-CD scarcely induced the CF leakage from above the three liposomes. From the profiles of % CF leakage, together with measurements of differential scanning calorimetry, it was found that hydrophobic DOM-beta-CD penetrates the matrix of the liposomes to interact with them as well as TOM-beta-CD, and that less hydrophobic alpha-CD exists at the surface of the membrane to interact with the liposomes. Further, it was found that the interaction of CDs with liposomes changes depending not only on the length of fatty acid chain of phospholipid (condensation force and hydrophobicity) but also the hydrophobicity and the cavity size of CD.  相似文献   

14.
Cationic liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmityldimethylammmonium bromide (DPAB) were prepared by the Bangham method and the effect of DPAB on the membrane properties was examined in terms of liposomal shape, particle size, trapping efficiency, surface potential and dispersibility. The dispersibility of the mixed DPPC/DPAB liposomes (the mole fraction of DPAB (XDPAB)  0.05) was excellent and the dispersibility was maintained for 6 months, since the zeta-potential of the mixed liposomes was approximately +40 mV. The trapping efficiency of the mixed DPPC/DPAB liposomes (XDPAB = 0.05) was 10 times greater than that of the DPPC liposomes, and the value was largest among the mixed liposomes (XDPAB = 0–1.0). Freeze-fracture electron micrographs indicated that the shape of the mixed DPPC/DPAB liposomes (XDPAB = 0.05) was that of large unilamellar vesicles (LUVs) with a diameter of approximately 2 μm, while the shape of the DPPC liposomes was that of multilamellar vesicles (MLVs). The mixed liposomes had, therefore, a high trapping efficiency. Furthermore, the shape of the mixed DPPC/DPAB liposomes (XDPAB = 0.75) was also that of LUVs with a diameter of approximately 2 μm and these had a high trapping efficiency. Whereas, the particle size (500 nm) of the mixed DPPC/DPAB liposomes (XDPAB = 0.25) was smaller than that of the former and had the minimum trapping efficiency. The phase transition temperature of the liposomal bilayer membranes indicated a maximum value at 0.25–0.30 mole fractions of DPAB. These facts were considered to be due to the fact that DPPC and DPAB, whose molar ratio was 7.5:2.5, were tightly packed in the liposomal bilayer membranes and that the curvature of the liposomal particle was resultantly large. Nevertheless, LUVs having a high trapping efficiency were easily obtained by mixing a small amount of DPAB with the DPPC.  相似文献   

15.
The structural transition of L-alpha-dipalmitoylphosphatidylcholine (DPPC) liposomes, caused by the addition of a small amount of stearylamine (SA), has been characterized. It has been reported that the shape of DPPC liposomes changes from multilamellar vesicles to large-unilamellar vesicles at the molar concentration ratio of DPPC/SA=9.5/0.5, however, the possible diving factors for this phenomenon have not so far been presented. Flat lipid membranes consisting of DPPC and SA, prepared by the quasi-Bangham method or the Langmuir-Blodgett (LB) technique, are employed in this study when considering the molecular interaction in and between lipid membranes, which should play a key role for determining the liposome shape. The colloid probe atomic force microscopy reveals that the addition of SA results in an inter-film electrosteric repulsion. This repulsive interaction causes a significant increase in the inter-film distance, which is confirmed with freeze-fracture transmission electron microscopy (FF-TEM) and small-angle X-ray scattering (SAXS), and thereby, the large-unilamellar vesicles are formed for reducing the inter- and intra-firm repulsive forces. Taking the molecular structures into consideration, it seems that the shape transition of DPPC liposomes results from such electrostatic interactions as well as packing geometry of the two components.  相似文献   

16.
The effect of adsorption of bovine serum albumin (BSA) on the membrane characteristics of liposomes at pH 7.4 was examined in terms of zeta potential, micropolarity, microfluidity and permeability of liposomal bilayer membranes, where negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG)/L-alpha-dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP)/DPPC and positively charged stearylamine (SA)/DPPC mixed liposomes were used. BSA with negative charges adsorbed on negatively charged DPPG/DPPC mixed liposomes but did not adsorb on negatively charged DCP/DPPC and positively charged SA/DPPC mixed liposomes. Furthermore, the adsorption amount of BSA on the mixed DPPG/DPPC liposomes increased with increasing the mole fraction of DPPG in spite of a possible electrostatic repulsion between BSA and DPPG. Thus, the adsorption of BSA on liposomes was likely to be related to the hydrophobic interaction between BSA and liposomes. The microfluidity of liposomal bilayer membranes near the bilayer center decreased by the adsorption of BSA, while the permeability of liposomal bilayer membranes increased by the adsorption of BSA on liposomes. These results are considered to be due to that the adsorption of BSA brings about a phase separation in liposomes and that a temporary gap is consequently formed in the liposomal bilayer membranes, thereby the permeability of liposomal bilayer membranes increases by the adsorption of BSA.  相似文献   

17.
Nanotechnology-based drug delivery systems (nanoDDSs) have seen recent popularity due to their favorable physical, chemical, and biological properties, and great efforts have been made to target nanoDDSs to specific cellular receptors. CD44/chondroitin sulfate proteoglycan (CSPG) is among the receptors overexpressed in metastatic melanoma, and the sequence to which it binds within the type IV collagen triple-helix has been identified. A triple-helical "peptide-amphiphile" (alpha1(IV)1263-1277 PA), which binds CD44/CSPG, has been constructed and incorporated into liposomes of differing lipid compositions. Liposomes containing distearoyl phosphatidylcholine (DSPC) as the major bilayer component, in combination with distearoyl phosphatidylglycerol (DSPG) and cholesterol, were more stable than analogous liposomes containing dipalmitoyl phosphatidylcholine (DPPC) instead of DSPC. When dilauroyl phosphatidylcholine (DLPC):DSPG:cholesterol liposomes were prepared, monotectic behavior was observed. The presence of the alpha1(IV)1263-1277 PA conferred greater stability to the DPPC liposomal systems and did not affect the stability of the DSPC liposomes. A positive correlation was observed for cellular fluorophore delivery by the alpha1(IV)1263-1277 PA liposomes and CD44/CSPG receptor content in metastatic melanoma and fibroblast cell lines. Conversely, nontargeted liposomes delivered minimal fluorophore to these cells regardless of the CD44/CSPG receptor content. When metastatic melanoma cells and fibroblasts were treated with exogeneous alpha1(IV)1263-1277, prior to incubation with alpha1(IV)1263-1277 PA liposomes, to potentially disrupt receptor/liposome interactions, a dose-dependent decrease in the amount of fluorophore delivered was observed. Overall, our results suggest that PA-targeted liposomes can be constructed and rationally fine-tuned for drug delivery applications based on lipid composition. The selectivity of alpha1(IV)1263-1277 PA liposomes for CD44/CSPG-containing cells represents a targeted-nanoDDS with potential for further development and application.  相似文献   

18.
The effects of soybean-derived sterylglucoside (SG) on the fluidity of liposomal membrane composed of dipalmitoylphosphatidylcholine (DPPC) were investigated compared with those of soybean-derived sterol (SS) and cholesterol (Ch) using an electron spin resonance spectrometer. Three kinds of liposomes were prepared in the molar ratio of DPPC/X=7/4, where X is SS, Ch or SG. The fluidity close to the polar head groups increased with an increase of temperature in the DPPC membrane containing SS, Ch and SG in the range 35 to 45 degrees C. Those near the hydrophobic end changed with an increase in temperature in liposomes containing SS, Ch and SG, which had a fluidizing effect on the DPPC membrane below the transition temperature (Tm, 41.9 degrees C) and a condensing effect over the Tm. The fluidizing effects of these compounds around 37 degrees C near the polar head group and the hydrophobic end increased in the following order: Ch < SG < or = SS and SS < Ch < SG, respectively. SG increased the fluidity of liposomal membrane dramatically above the Tm (35.4 degrees C). These results suggest that the high fluidity close to the hydrophobic end of the liposomal membranes around 37 degrees C, the decrease of Tm, and the sigmoidal nature of fluidity vs. temperature are important factors in the effectiveness of liposomes containing SG as a carrier of drugs.  相似文献   

19.
Liposomes composed of Ceramide 3, [2S,3S,4R-2-stearoylamide-1,3,4-octadecanetriol], and L-alpha-dipalmitoylphosphatidylcholine (DPPC) were prepared by varying the amount of Ceramide 3, and the effects of Ceramide 3 on the liposome formation, particle size, dispersibility, microviscosity and phase transition temperature were examined by means of a microscopy, a dynamic light scattering method, a fluorescence polarization method, a differential scanning calorimetry (DSC) and so on. All the DPPC was able to contribute to the formation of liposomes up to 0.130 mol fraction of Ceramide 3. The particle size of liposomes was almost unaffected by the addition of Ceramide 3. The dispersibility of liposomes containing Ceramide 3 was maintained for at least 15 days. The microviscosity of liposomal bilayer membranes in the liquid crystalline state was increased with increasing the mole fraction of Ceramide 3, while that in the gel state was independent of the mole fraction of Ceramide 3. The phase transition temperature from gel to liquid crystalline states of DPPC bilayer membranes was shifted upwards with the addition of Ceramide 3, indicating a cooperative interaction between DPPC and Ceramide 3 molecules. However, a sharp DSC peak became broad and split at higher mole fractions of Ceramide 3, suggesting a phase separation in the mixed DPPC/Ceramide 3 liposomal bilayer membranes. These phenomena were suggested to be related to the previously observed fact for the mixed DPPC/Ceramide 3 monolayers that Ceramide 3 interacts with DPPC in the liquid-expanded phase with consequent phase separation accompanied with domain formation.  相似文献   

20.
Liposomes containing high concentrations of the anticancer drug doxorubicin, prepared by active-loading techniques, have been intensively investigated as potential agents for chemotherapy. The present study investigates the possibility of active uptake and photoinduced release of such solutes from liposomes incorporating a photoisomerizable lipid. The active loading of acridine orange and doxorubicin was investigated using liposomes containing entrapped ammonium sulfate. The liposomes were prepared with dipalmitoyl-L-alpha-phosphatidyl choline (DPPC) and a photochromic lipid, (1,2-(4'-n-butylphenyl)azo-4'-(gamma-phenylbutyroyl))-glycero-3- phosphocholine (Bis-Azo PC), which isomerizes on exposure to near-UV light with resulting changes in membrane permeability to solutes. The rate of loading of the vesicles below the phase transition temperature of DPPC was investigated as a function of Bis-Azo PC and cholesterol concentrations in the liposome. The rate of doxorubicin uptake was found to be greatly decreased in the presence of cholesterol, while below 30 degrees C the rate of acridine orange uptake was increased in the presence of cholesterol. On exposure to a single UV laser pulse, actively loaded acridine orange was rapidly released from liposomes containing Bis-Azo PC at a rate similar to that found for the indicator dye calcein. However while cholesterol had previously been shown to greatly enhance the rate of photo-induced calcein leakage, it had no significant effect on the rate of acridine orange release. After active loading into DPPC vesicles containing Bis-Azo PC, doxorubicin was also released after exposure to a single laser pulse, but at a rate slower than for acridine orange and calcein. The difference in behavior between these systems is ascribed to the interactions of acridine orange and doxorubicin with the liposome bilayer. Photoinduced release of pharmacologically active materials from sensitized liposomes might provide a useful adjunct or alternative to conventional photodynamic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号