首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A four-wavelength near-infrared (NIR) tunable diode laser sensor has been developed for the simultaneous measurement of liquid water film thickness, liquid-phase temperature and vapor-phase temperature above the film. This work is an important improvement of a three-wavelength concept previously introduced by Yang et al. (Appl. Phys. B 99:385, 2010), which measured the film thickness in environments with known temperature only. In the new sensor, an optimized combination of four wavelengths is chosen based on a sensitivity analysis with regard to the temperature dependence of the liquid water absorption cross section around 1.4 μm. The temperature of liquid water and the film thickness are calculated from absorbance ratios taken at three wavelength positions assessing the broad-band spectral signature of liquid water. The vapor-phase temperature is determined from the absorbance ratio of two lasers rapidly tuned across two narrow-band gas-phase water absorption transitions. The performance of the sensor was demonstrated in a calibration cell providing liquid layers of variable thickness and temperature with uncertainties smaller than 5% for thickness measurements and 1.5% for liquid-phase temperatures, respectively. Experiments are also presented for time-resolved thickness and temperature measurements of evaporating water films on a quartz plate.  相似文献   

2.
A fiber-based multiplexed tunable diode-laser absorption sensor with three near-infrared distributed-feedback diode lasers at ∼1.4 μm is used for simultaneous nonintrusive measurements of liquid water film thickness and vapor-phase temperature. Water film thicknesses are derived from broad-band absorption determined at two fixed wavelengths while gas-phase temperature above the film is obtained via two-line thermometry using the fast wavelength tuning with line-integrating absorption. Probing the liquid film at two wavelengths with significantly different liquid-phase absorption cross sections allows discriminating against additional signal losses due to surface fowling, reflection, and beam steering. The technique is demonstrated for liquid layers of defined thicknesses and in time-resolved measurements of evaporating films.  相似文献   

3.
Spray impingement wall film breakup by wave entrainment   总被引:1,自引:0,他引:1  
Fuel spray impingement on engine wall and piston in the spark-ignition direct-injection (SIDI) setting has been considered a major concern in the aspect of engine emission and combustion efficiency. Excess wall film will result in deterioration of engine friction, incomplete combustion, and substantial cycle-to-cycle variations. These effects are more pronounced during engine cold-start process. Therefore, the formation of wall film on engine wall/piston and the dynamic process of the wall film interacting with impinging spray and spray-induced gas flow are of great significance for reducing wall film mass. However, the dynamic process of wall film was not investigated thoroughly in existing literatures. This work will present a high-speed, simultaneous measurement of a single-hole spray structure, as well as wall film geometry and thickness, via Mie scattering and volumetric laser-induced fluorescence, respectively. Quantitative film thickness measurement was achieved via fluorescence intensity signal calibration with a known, wedge-shape liquid film apparatus. Remarkable wall film droplet entrainment at the leading edge of the liquid film waves was revealed in the measurement, which has not been adequately depicted or analyzed in existing spray impingement studies. A considerable amount of liquid droplets detaches from the liquid film via liquid film fingering, during which process the quantity of liquid mass on the wall is decreased. Quantitative analysis of such phenomenon is performed and we estimated that a liquid mass equivalent to 30–40% of the residual liquid film mass is detached from the liquid film via wave entrainment. Furthermore, through the comparative study of the side view of the spray and the liquid film caused by spray impingement, it is shown that non-uniform spray structure is likely the cause of liquid film wavy motions. These observations suggest that wave entrainment should be considered by numerical models and experimental designs to accurately predict spray impingement phenomenon.  相似文献   

4.
A method is described for the microspectral analysis of thin titanium-copper films on molybdenum wires. It is shown that the distribution of copper across the film thickness is irregular and that most of the film contains a small amount of molybdenum (2–5%). Also aluminum was detected in all films, due to diffusion from the corundum crucible during deposition of the film on the wire in a special electro-vacuum device at high temperature (1400–1500° C).  相似文献   

5.
We present capacitance measurements of the equilibrium thickness of (3)He-(4)He mixture films as a function of temperature and concentration. The films are adsorbed on a Cu substrate situated above bulk liquid mixture. As we scan across the tricritical point, we observe a thickening of the film indicating the presence of a repulsive critical Casimir force.  相似文献   

6.
Pulsed laser deposition technique is used for deposition of tungsten-doped indium oxide films. The effect of film thickness on structural, optical and electrical properties was studied using X-ray diffraction (XRD), atomic force microscopy, UV-visible spectroscopy, and electrical measurements. X-ray diffraction study reveals that all the films are highly crystalline and oriented along (2 2 2) direction and the film crystallinity increases with increase in film thickness. Atomic force microscopy analysis shows that these films are very smooth with root mean square surface roughness of ∼1.0 nm. Bandgap energy of the films depends on thickness and varies from 3.71 eV to 3.94 eV. It is observed that resistivity of the films decreases with thickness, while mobility increases.  相似文献   

7.
ZnO thin films were grown using Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. Annealing temperatures and film thickness effect on the structural, morphological, optical and electrical properties of the films were studied. For this as-deposited films were annealed at 200, 300, 400 and 500 °C for 30 min in oxygen atmosphere. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that the films are covered well with glass substrates and have good polycrystalline structure and crystalline levels. The film thickness effect on band gap values was investigated and band gap values were found to be within the range of 3.49-3.19 eV. The annealing temperature and light effect on electrical properties of the films were investigated and it was found that the current increased with increasing light intensity. The resistivity values were found as 105 Ω-cm for as-deposited films from electrical measurements. The resistivity decreased decuple with annealing temperature and decreased centuple with light emission for annealed films.  相似文献   

8.
A continual model of nonuniform magnetism in thin films and wires made of a diluted magnetic semiconductor is considered with regard to the finite spin polarization and band splitting of carriers responsible for the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities. Spatial distributions (across the film thickness or along the wire radius) of magnetization and the concentrations of carriers with different spin orientations for different temperatures, as well as the temperature dependence of the average magnetization, are obtained as a solution to a nonlinear integral equation.  相似文献   

9.
Measurements of elastic constants of strained 200 and 400 nm thin films, as well as unstrained samples, of the colossal magnetoresistance (CMR) material La0.67Ca0.33MnO3 are presented. Since the peak resistance temperature of a strained CMR film decreases as the film thickness decreases, it is of interest to see if features in the elastic constants, reflecting structural or magnetic changes, follow the peak resistance temperature. It is observed that features in the elastic constants appear not only at the peak resistance temperatures of the CMR samples, but also at a temperature about 17 K higher. A new technique, thin-film resonant ultrasound spectroscopy, was used to make the measurements.  相似文献   

10.
In this study, p-type ZnO films with excellent electrical properties were prepared by ultrasonic spray pyrolysis (USP) combining with a N-Al codoping technique. The influence of the substrate temperature and annealing temperature on electrical properties of ZnO films was investigated. The growth and doping process of ZnO films was explored by thermogravimetry, differential scanning calorimetry and mass spectrum (TG-DSC-MS) measurements. It is suggested that the variation of electrical properties of ZnO films with the substrate temperature and annealing temperature results from the removal of H element out of the films.  相似文献   

11.
The structure of ??- and 2??-walls in smectic films was reconstructed from optical reflectivity measurements. Investigations were made in free standing films of nonpolar Smectic-C and ferroelectric Smectic-C* liquid crystals. ??-walls are observed in magnetic field and 2??-walls in electric field parallel to the film plane. For the first time the distribution of molecular orientation across the walls was determined. Peculiarities of the wall structure related to the anisotropy of the film elasticity were found. The structure of the walls is well described by the theory taking into account the anisotropy of two-dimensional elasticity of smectic films.  相似文献   

12.
We report on electrical measurements and structural characterization performed on boron-doped diamond-like carbon thin films deposited by femtosecond pulsed laser deposition. The resistance has been measured between 77 and 300 K using four probe technique on platinum contacts for different boron doping. Different behaviours of the resistance versus temperature have been evidenced between pure DLC and boron-doped DLC. The a-C:B thin film resistances exhibit Mott variable range hopping signature with temperature. Potential applications of DLC thin films to highly sensitive resistive thermometry is going to be discussed.  相似文献   

13.
A novel two-wavelength mid-infrared laser-absorption diagnostic has been developed for simultaneous measurements of vapor-phase fuel mole fraction and liquid fuel film thickness. The diagnostic was demonstrated for time-resolved measurements of n-dodecane liquid films in the absence and presence of n-decane vapor at 25°C and 1 atm. Laser wavelengths were selected from FTIR measurements of the C–H stretching band of vapor n-decane and liquid n-dodecane near 3.4 μm (3000 cm−1). n-Dodecane film thicknesses <20 μm were accurately measured in the absence of vapor, and simultaneous measurements of n-dodecane liquid film thickness and n-decane vapor mole fraction (300 ppm) were measured with <10% uncertainty for film thicknesses <10 μm. A potential application of the measurement technique is to provide accurate values of vapor mole fraction in combustion environments where strong absorption by liquid fuel or oil films on windows make conventional direct absorption measurements of the gas problematic.  相似文献   

14.
The smectic order in thin and ultra thin films (150–600Å) of the chiral ferroelectric liquid crystal mixture ZLI-3654 is studied using the X-ray reflectivity technique. The spin cast films on various substrates (float glass, Si wafer, polymer coated glass, etc.) order spontaneously with smectic layering parallel to the substrate surface. A simple model which assumes a sinusoidal density modulation can describe well the experimental reflectivity profiles. The X-ray reflectivity provides a method to evaluate the phases of the structure factor. We demonstrate, for the first time, that is possible to extract the molecular tilt angle, , in ferroelectric liquid crystals from X-ray reflectivity measurements of ultra thin films. The temperature dependence of the tilt angle in the smectic C* phase are almost independent of the film thickness (down to 200 Å) and are similar to those in the bulk.  相似文献   

15.
1引言降膜式蒸发器由于具有很高的换热强度和易操作性,在化工、食品、制冷和海水淡化等工业中得到了广泛的应用。对于垂直降膜的流动和换热特性,前人已经进行了很多的研究[‘-’]。但是绝大部分的研究工作都局限于单侧液膜的传热与流动问题,缺少对实际工程上采用的降膜蒸发器在同时考虑双侧传热时的实验结果。同时,大部分实验研究中采用恒热流的电加热方式,而对于工程上常用的蒸汽加热的恒壁温情况实验结果较少。此外,管壁材料对蒸发器换热性能的影响也需要进一步的研究。本文采用模拟工程上的竖直管降膜式蒸发实验装置,对不锈钢…  相似文献   

16.
Thin films of copper selenide (CuSe) were physically deposited layer-by-layer up to 5 layers using thermal evaporation technique onto a glass substrate. Various film properties, including the thickness, structure, morphology, surface roughness, average grain size and electrical conductivity are studied and discussed. These properties are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ellipsometer and 4 point probe at room temperature. The dependence of electrical conductivity, surface roughness, and average grain size on number of layers deposited is discussed.   相似文献   

17.
《Current Applied Physics》2010,10(3):821-824
We have studied the effect of thickness on the structural, magnetic and electrical properties of La0.7Ca0.3MnO3 thin films prepared by pulsed laser deposition method using X-ray diffraction, electrical transport, magneto-transport and dc magnetization. X-ray diffraction pattern reflects that all films have c-axis epitaxial growth on LaAlO3 substrate. The decrease in out-of-plane cell parameter specifies a progressive relaxation of in the plane compressive strain as the film thickness is increases. From the dc magnetization measurements, it is observed that ferromagnetic to paramagnetic transition temperature increases with increase in the film thickness. Magneto-resistance and temperature coefficient of resistance increases with film thickness and have maximum value near its metal to insulator transition temperature.  相似文献   

18.
Nanocrystalline indium oxide (INO) films are deposited in a back ground oxygen pressure at 0.02 mbar on quartz substrates at different substrate temperatures (Ts) ranging from 300 to 573 K using pulsed laser deposition technique. The films are characterized using GIXRD, XPS, AFM and UV-visible spectroscopy to study the effect of substrate temperature on the structural and optical properties of films. The XRD patterns suggest that the films deposited at room temperature are amorphous in nature and the crystalline nature of the films increases with increase in substrate temperature. Films prepared at Ts ≥ 473 K are polycrystalline in nature (cubic phase). Crystalline grain size calculation based on Debye Scherrer formula indicates that the particle size enhances with the increase in substrate temperature. Lattice constant of the films are calculated from the XRD data. XPS studies suggest that all the INO films consist of both crystalline and amorphous phases. XPS results show an increase in oxygen content with increase in substrate temperature and reveals that the films deposited at higher substrate temperatures exhibit better stoichiometry. The thickness measurements using interferometric techniques show that the film thickness decreases with increase in substrate temperature. Analysis of the optical transmittance data of the films shows a blue shift in the values of optical band gap energy for the films compared to that of the bulk material owing to the quantum confinement effect due to the presence of quantum dots in the films. Refractive index and porosity of the films are also investigated. Room temperature DC electrical measurements shows that the INO films investigated are having relatively high electrical resistivity in the range of 0.80-1.90 Ωm. Low temperature electrical conductivity measurements in the temperature range of 50-300 K for the film deposited at 300 K give a linear Arrhenius plot suggesting thermally activated conduction. Surface morphology studies of the films using AFM reveal the formation of nanostructured indium oxide thin films.  相似文献   

19.
We present two non-intrusive, laser-based imaging techniques for the quantitative measurement of water fluid film thickness. The diagnostics methods are based on laser-induced fluorescence (LIF) of the organic tracer ethyl acetoacetate added to the liquid in sub-percent (by mass) concentration levels, and on spontaneous Raman scattering of liquid water, respectively, both with excitation at 266 nm. Signal intensities were calibrated with measurements on liquid layers of known thickness in a range between 0 and 500 μm. Detection via an image doubler and appropriate filtering in both light paths enabled the simultaneous detection of two-dimensional liquid film thickness information from both methods. The thickness of water films on transparent quartz glass plates was determined with an accuracy of 9% for the tracer LIF and 15% for the Raman scattering technique, respectively. The combined LIF/Raman measurements also revealed a preferential evaporation of the current tracer during the time-resolved recording of film evaporation.  相似文献   

20.
Ultra thin platinum films were grown by dc magnetron sputtering on thermally oxidized Si (1 0 0) substrates. The electrical resistance of the films was monitored in situ during growth. The coalescence thickness was determined for various growth temperatures and found to increase from 1.1 nm for films grown at room temperature to 3.3 nm for films grown at 400 °C. A continuous film was formed at a thickness of 2.9 nm at room temperature and 7.5 nm at 400 °C. The room temperature electrical resistivity decreases with increased growth temperature, while the in-plain grain size and the surface roughness, measured with a scanning tunneling microscope (STM), increase. Furthermore, the temperature dependence of the film electrical resistance was explored at various stages during growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号