首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the costn–benefit analysis of a cold standby system composed of n identical repairable units, subject to slow switch. Two models of system functioning are studied in this paper. In model 1, the repair time of a unit is assumed to follow exponential distribution and the other time distributions as arbitrary, while in model 2, the repair time of a unit is assumed to be arbitrarily distributed and the other time distributions follow exponential law. For both the models, the system characteristics, namely

(i) the expected upn–time of the system during the period (O,t]

(ii) the expected busyn–period of the repair facility during the period (0,t] and

(iii) the expected time the units spend in the switchover/installation state during the period (O,t]

are studied by identifying the system a t suitable regeneration epochs. The cost-benefit analysis is carried out using these characteristics  相似文献   

2.
It is assumed that a unit is either in operation or is in repair. When the main unit is under repair, spare units which cannot be repaired are used. In this system the following quantities are of interest: (i) The time distribution and the mean time to first-system failure, given that the n spare units are provided at time 0. (ii) The probability that the number of the failed spare units are equal to exactly n during the interval (0, t], and its expected number during the interval (0, t]. These quantities are derived by solving the renewal-type equations.Two optimization problems are discussed using the results obtained, viz.: (i) The expected cost of two systems, one with both a main unit and spare units and the other with only spare units is considered. (ii) A preventive maintenance policy of the main unit is considered in order to minimize the expected cost rate. Some policies of the two problems are discussed under suitable conditions. Numerical examples are also presented.  相似文献   

3.
在文[1]的基础上,本文研究了修理有延迟和修理设备可更换的两单元冷储备可修系统.在假定单元的寿命服从指数分布、修理时间和延迟时间服从一般分布、修理设备的寿命和故障后的更换时间服从指数分布下,通过定义修理设备的"广义忙期",使用更新过程理论和全概率分解技术,提出一种新的分析技巧,讨论了修理设备的一些可靠性指标,获得了如修理设备的可用度和故障次数等可靠性结果.  相似文献   

4.
《Optimization》2012,61(3):441-449
The paper deals with the availability and the reliability analysis of a system with dependent units having a single repair facility subject to preventive maintenance. The system initially consists of n-identical units (connected in parallel) each with failure rate λn. The failure rate of a unit at any given instant of time depends upon the number of units operating at that instant. The time to repair of a failed unit and the time for maintenance of the repair- facility are arbitrarily distributed whereas the time to failure of a unit is exponentially distributed. The results obtained have been compared with those obtained when the repair facility is not subject to preventive maintenance.  相似文献   

5.
两部件冷备系统的可靠性分析及其最优更换策略   总被引:11,自引:1,他引:10  
本文研究了两个不同部件、一个修理工组成的冷贮备可修系统,假定它们的寿命分布和维修分布均匀为指数分布,但故障后均不能修复如新时,我们利用几何过程和补充变量法求得了一些可靠性指标,并以故障次数为策略,以长期运行单位时间内的期望效益为目标函数,确定了最优的故障次数,便得目标函数达到最大值,从而保证了系统的可用度。  相似文献   

6.
In this paper, we study (N, L) switch-over policy for machine repair model with warm standbys and two repairmen. The repairman (R1) turns on for repair only when N-failed units are accumulated and starts repair after a set up time which is assumed to be exponentially distributed. As soon as the system becomes empty, the repairman (R1) leaves for a vacation and returns back when he finds the number of failed units in the system greater than or equal to a threshold value N. Second repairman (R2) turns on when there are L(>N) failed units in the system and goes for a vacation if there are less than L failed units. The life time and repair time of failed units are assumed to be exponentially distributed. The steady state queue size distribution is obtained by using recursive method. Expressions for the average number of failed units in the queue and the average waiting time are established.  相似文献   

7.
This paper presents the formulas of the expected long-run cost per unit time for a cold-standby system composed of two identical components with perfect switching. When a component fails, a repairman will be called in to bring the component back to a certain working state. The time to repair is composed of two different time periods: waiting time and real repair time. The waiting time starts from the failure of a component to the start of repair, and the real repair time is the time between the start to repair and the completion of the repair. We also assume that the time to repair can either include only real repair time with a probability p, or include both waiting and real repair times with a probability 1 − p. Special cases are discussed when both working times and real repair times are assumed to be geometric processes, and the waiting time is assumed to be a renewal process. The expected long-run cost per unit time is derived and a numerical example is given to demonstrate the usefulness of the derived expression.  相似文献   

8.
The present investigation deals with a multicomponent repairable system with state dependent rates. For smooth functioning of the system, mixed standbys (warm and cold) are provided so that the failed units are immediately replaced by standbys if available. To prevent congestion in the system due to failure of units, permanent along with additional repairmen are provided to restore the failed units. It is assumed that the units may fail in two modes. The units have exponential life time and repair time distributions. The failed unit may balk in case of heavy load of failed units. The failed units may also wait in the queue and renege on finding the repairmen busy according to a pre-specified rule. The Chapman–Kolmogorov equations, governing the model in the form of matrix are constructed using transition flow rates of different states. The steady state solution of queue size distribution is derived using product formula. A cost function is suggested to determine the optimal number of warm and cold standbys units required for the desired level of quality of service. The numerical illustrations are carried out to explore the effect of different parameters on performance measures.  相似文献   

9.
The main intent of the paper is to investigate the stochastic behaviour of a single-server n-unit system subject to random inspection and several failure modes. The time between successive inspections is a random variable distributed exponentially. It is assumed that the life-time of a unit is arbitrarily distributed while all the other time distributicns involved are exponential. At any instant t, the system is characterized by the probabilities of its beinq in the ‘up’ or ‘down’ state . Integral equations are established for these probabilities by identifying the system at suitable regenerative epochs corresponding to different initial conditions. Various system parameters of significant importance, namely,

1. point-wise availability of the system at instant t,

2. steady-state availability of the system,

3. s-expected up-time of the system in [o, t],

4. s-expected inspection time of the server in [o, t],

5. s-expected repair time of type i (1 ≤ i ≤ r) in [o, t] and

6. s-expected net gain per unit time in [o, t], have been obtained.  相似文献   

10.
A continuously monitored one‐unit system, backed by an identical standby unit, is perfectly repaired by an in‐house repair person, if achievable within a random or deterministic patience time (DPT), or else by a visiting expert, who repairs one or all failed units before leaving. We study four models in terms of the limiting availability and limiting profit per unit time, using semi‐Markov processes, when all distributions are exponential. We show that a DPT is preferable to a random patience time, and we characterize conditions under which the expert should repair multiple failed units (rather than only one failed unit) during each visit. We also extend the method when life‐ and repair times are non‐exponential. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
修理设备可更换且有修理延迟的N部件串联系统分析   总被引:3,自引:0,他引:3  
假定部件的寿命服从指数分布,修理延迟时间和修理时间均服从任意分布,并且修理设备的寿命服从指数分布,其更换时间服从任意分布的情况下,利用马尔可夫更新过程理论和拉普拉斯变换工具,研究了修理有延迟且修理设备可更换的n部件串联可修系统,求得了系统的可用度和(0,t]时间内的平均故障次数.进一步,在定义修理设备“广义忙期”下,利用全概率分解,提出了一种新的分析技术,讨论了修理设备的可靠性指标,得到修理设备的一些重要可靠性结果.  相似文献   

12.
A complex discrete warm standby system with loss of units   总被引:1,自引:0,他引:1  
A redundant complex discrete system is modelled through phase type distributions. The system is composed of a finite number of units, one online and the others in a warm standby arrangement. The units may undergo internal wear and/or accidental external failures. The latter may be repairable or non-repairable for the online unit, while the failures of the standby units are always repairable. The repairability of accidental failures for the online unit may be independent or not of the time elapsed up to their occurrence. The times up to failure of the online unit, the time up to accidental failure of the warm standby ones and the time needed for repair are assumed to be phase-type distributed. When a non-repairable failure occurs, the corresponding unit is removed. If all units are removed, the system is then reinitialized. The model is built and the transient and stationary distributions determined. Some measures of interest associated with the system, such as transition probabilities, availability and the conditional probability of failure are achieved in transient and stationary regimes. All measures are obtained in a matrix algebraic algorithmic form under which the model can be applied. The results in algorithmic form have been implemented computationally with Matlab. An optimization is performed when costs and rewards are present in the system. A numerical example illustrates the results and the CPU (Central Processing Unit) times for the computation are determined, showing the utility of the algorithms.  相似文献   

13.
This paper presents the formulations of the expected long-run cost per time unit for a system monitored by a static control chart and by an adaptive control chart respectively. The static chart has a fixed sampling interval and a fixed sample size. The adaptive chart has a fixed sample size but variable sampling intervals. The system is supposed to have three states, normal working state, failure delay time state, and failed state. Two levels of repair are used to maintain the system. A minor repair is used to restore the system if a detectable defect is confirmed by an inspection. A major repair will be performed if the system fails. The expected cost per time unit for maintaining such a system is obtained. The objective of such analysis is to find an optimal sampling policy for the inspection process. An artificially generated data example and a real data example are used to compare the expected cost per time unit for both the static and adaptive control charts.  相似文献   

14.
In repairable systems with redundancy, failed units can be replaced by spare units in order to reduce the system downtime. The failed units are sent to a repair shop or manufacturer for corrective maintenance and subsequently are returned for re-use. In this paper we consider a 1 out of n system with cold standby and we assume that repaired units are “as good as new”.When a unit has an increasing failure rate it can be advantageous to perform preventive maintenance in order to return it to its “as good as new” state, because preventive maintenance will take less time and tends to be cheaper. In the model we present we use age-replacement; a machine is taken out for preventive maintenance and replaced by a standby one if its age has reached a certain value, Tpm. In this paper we derive an approximation scheme to compute the expected uptime, the expected downtime and the expected costs per time unit of the system, given the total number of units and the age-replacement value, Tpm. Consequently the number of units and the value Tpm can be determined for maximum long-term economy.  相似文献   

15.
We consider a k-out-of-n system with repair underT-policy. Life time of each component is exponentially distributed with parameter λ. Server is called to the system after the elapse ofT time units since his departure after completion of repair of all failed units in the previous cycle or until accumulation ofn — k failed units, whichever occurs first. Service time is assumed to be exponential with rateμ.T is also exponentially distributed with parameter α. System state probabilities in finite time and long run are derived for (i) cold (ii) warm (iii) hot systems. Several characteristics of these systems are obtained. A control problem is also investigated and numerical illustrations are provided. It is proved that the expected profit to the system is concave in α and hence global maximum exists.  相似文献   

16.
This paper considers anN-unit series system supported by a warm standby unit and a single repair facility. Suppose that the operating units and the standby unit have constant failure ratesa anda 1, respectively. When the system is down, all the operable units have constant failure ratea 2. The repair time of a failed unit has an arbitrary distribution. Using Takács' method and a Markov renewal process, we discuss the stochastic behavior of this system and obtain the explicit formulae of the system availability and failure frequency.Project supported by the National Natural Science Foundation of China.  相似文献   

17.
In this paper, we investigate the reliability of a type of 1-for-2 shared protection systems. The 1-for-2 shared protection system is the most basic fault-tolerant configuration with shared backup units. We assume that there are two working units each serving a single user and one shared protection (spare) unit in the system. We also assume that the times to failure and to repair are subject to exponential and general distributions respectively. Under these assumptions, we derive the Laplace transform of the survival function (the cdf that the system will survive beyond a given time) for each user as well as the user-perceived Mean Time to First Failure (MTTFF) by combining the state transition analysis and the supplementary variable method. We also show the effect of the repair-time distribution, the failure rates and the repair rates of the units through the case study of small-sized two enterprises that share one spare device for backup purpose. The analysis reveals what is important and what should be done in order to improve the user-perceived reliability of shared protection systems.  相似文献   

18.
In this paper we give a reliability analysis of a stand-by system with repair, consisting of N working and NR stand-by units. Failed and repaired units are collected in intermediate stocks. Concerning the delivery from the intermediate stocks we consider two rules: (i) the collected units are delivered in fixed time intervals; (ii) the units will be delivered when there are k units accumulated. The system fails if a unit that has failed cannot be replaced by a stand-by unit. Using a point process approach we derive approximations for the stationary availability and mean time between failures of the system. Numerical results show that the proposed approximations, which can be handled easily, work well.  相似文献   

19.
This paper considers a single unit system which is first repaired if it fails. If the repair is not completed up to the fixed repair limit time then the unit under repair is replaced by a new one. The cost functions are introduced for the repair and the replacement of the failed unit. The optimum repair limit replacement time minimizing the expected cost per unit of time for an infinite time span is obtained analytically under suitable conditions. Two special cases where the repair cost functions are proportional to time and are exponential are discussed in detail with numerical examples.  相似文献   

20.
This paper considers a periodical replacement model based on a cumulative repair‐cost limit, whose concept uses the information of all repair costs to decide whether the system is repaired or replaced. The failures of the system can be divided into two types. One is minor failure that is assumed to be corrected by minimal repair, while the other is serious failure where the system is damaged completely. When a minor failure occurs, the corresponding repair cost is evaluated and minimal repair is then executed if this accumulated repair cost is less than a pre‐determined limit L, otherwise, the system is replaced by a new one. The system is also replaced at scheduled time T or at serious failure. Long‐run expected cost per unit time is formulated and the optimal period T* minimizing that cost is also verified to be finite and unique under some specific conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号