首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When 1,6-anhydro-2-azido-4-O-benzoyl-2-deoxy-β-D-glucopyranose (1 (l) was treated with allyl bromide in benzene-tetrahydrofuran solution in the presence of sodium hydride, we obtained the expected reaction product, 3-O-allyl-1,6-anhydro-2-azido-4-O-benzoyl-2-deoxy-β-D-glucopyranose (2), and the rearranged compounds 1,6-anhydro-2-azido-3-O-benzoyl-2-deoxy-β-D-glucopyranose (3) and 4-O-allyl-1,6-anhydro-2-azido-3-O-benzoyl-2-deoxy-β-D-glucopyranose (4).  相似文献   

2.
Abstract

Starting with methyl 2-(benzyloxycarbonyl)amino-2-deoxy-α-D-glucopyranoside (1), the isomeric methyl 2-amino-2-deoxy-α-D-glucopyranoside 3-, 4-, and 6-sulfates have each been prepared by sulfation of suitably blocked intermediates. Tritylation and acetylation of 1 followed by detritylation gave methyl 3,4-di-0-acetyl-2-(benzyloxycarbonyl)amino-2-deoxy-α-D-glucopyranoside (3), having a free 6-hydroxyl group. Base catalyzed 0–4→0–6 acetyl migration provided the corresponding 3,6 di-O-acetyl derivative (4) posessing a free 4-hydroxyl group. Preparation of methyl 4,6-0-benzylidene-2-(benzyloxycarbonyl)amino-2-deoxy-α-D-glucopyranoside (9) provided the intermediate bearing a free 3-hydroxyl group. 0-sulfation of 3, 4, and 9 was effected with the pyridine sulfur trioxide complex in dry pyridine.  相似文献   

3.
Abstract

In order to elucidate further the relationship between the composition of the fatty acyl groups in the nonreducing-sugar subunit of bacterial lipid A and its biological activity, 3-O-[(3R)-3-(acyloxy)tetradecanoyl]-2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-4-O-phosphono-D-glucose [GLA-63(R, R) and GLA-64(R, R)], and 3-O-[(3R)-3-(acyloxy)tetradecanoyl]-2-deoxy-4-O-phosphono-2-tetradecanamido-D-glucose [GLA-67(R), GLA-68(R) and GLA-69(R)] have been synthesized. Benzyl 2-[(3R)-3-(benzyloxymethoxy)tetradecanamido]-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (5) and benzyl 2-deoxy-4,6-O-isopropylidene-2-tetradecanamido-β-D-glucopyranoside (6) were each esterified with (3R)-3-dodecanoyloxytetradecanoic acid (1), (3R)-3-tetradecanoyloxytetradecanoic acid (2) or (3R)-3-hexadecanoyloxy-tetradecanoic acid (3), to give 7-11, which were then transformed, by the sequence of deisopropylidenation, 6-O-tritylation and 4-O-phosphorylation, into a series of desired compounds.  相似文献   

4.
Abstract

Different reaction conditions were investigated for the preparation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (5). Compound 5 on reaction with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide afforded the 4-O-substituted 2-acetamido-2-deoxy-β-D-glucopyranosyl derivative which, on O-deacetylation, gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-glucopyranoside (8). The trimethylsilyl (Me3Si) derivative of 8, on treatment with pyridineacetic anhydride-acetic acid for 2 days, gave the disaccharide derivative having an O-acetyl group selectively introduced at the primary position and Me3Si groups at the secondary positions. The latter groups were readily cleaved by treatment with aqueous acetic acid in methanol to afford benzyl 2-acetamido-4-O-(6-O-acetyl-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside, which on isopropylidenation gave the desired, key intermediate benzyl 2-acetamido-4-O-(6-O-acetyl-3,4-O-isopropylidene-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (12). Reaction of 12 with 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide under catalysis by bromide ion afforded the trisaccharlde derivative from which the title trisaccharide was obtained by systematic removal of the protective groups. The structures of the final trisaccharide and of various intermediates were established by 1H and 13C NMR spectroscopy.  相似文献   

5.
Abstract

The title compounds 1 and 2 (both C15O15NH21) crystallized in the monoclinic space group P21 (Z = 2) with a=8.864(1), b=8.346(1), c =13.569(1)Å, β =114.12(1), V=918.1(2)A3, D(calc) = 1.358 g/cc for compound 1, and a=15–045(1), b=8.106(1), c=7.491(1)Å, β =97.23(1)°, V=906.4(3)Å3 D(calc)= 1.375 g/cc, for compound 2. The structures were solved by direct methods and refined by the full-matrix least squares technique to R indices of 0.010 and 0.046, respectively. Both compounds are in the α ? D configuration and adopt the unusual 2C5, (1C4) chair conformation with the carbamoyl groups on the anomeric carbon atoms equatorially oriented. In this conformation the orientations of the substituents are 2e, 3a, 4a, 5a and 6a in 1 and 2e, 3a, 4a, 5e and 6a in 2 which leads to unfavorable 1,3-diaxial interactions. The “reverse anomeric effect” which induces the 2c5 chair conformation in these compounds, may have its origin in the unfavorable steric interactions found in the 5c2 (4C1) conformation where the carbamoyl group is axially oriented. Furthermore, the 2C5 conformation is stabilized by the N-H … O intramolecular hydrogen bond between the carbamoyl nitrogen atom and the pyranosyl ring oxygen atom. Semi-empirical energy calculations reveal that the rotational freedom of the carbamoyl group is greater for the equatorial orientation (2C5) than for the axial orientation (5C2).  相似文献   

6.
2′,3′-Dideoxy-2′-fluorokanamycin A (23) was prepared by condensation of 6-azido-4-0-benzoyl-2,3,6-trideoxy-2-fluoro-α-D-ribo-hexopyranosyl bromide (13) and a protected disaccharide (19). Methyl 4,6-0-benzylidene-3-deoxy-β-D-arabino-hexopyranoside (5) prepared from methyl 4,6-0-benzylidene-3-chloro-3-deoxy-β-D-allo-hexopyranoside (1) by oxidation with pyridinium chlorochromate followed by reduction with Na2 S2O4 was fluorinated with the DAST reagent to give methyl 4,6-O-benzylidene-2,3-dideoxy-2-fluoro-β-D-ribo-hexopyranoside (7). Successive treatment of 7 with NBS, NaN3 and SOBr2 gave 13. The structure of the final product (23) was determined by the 1H and 19F and shift-correlated 2D NMR spectra.  相似文献   

7.
Abstract

Glycosylation of methyl 3-O-(2-acetamido-3, 6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (1), catalyzed by mercuric cyanide, afforded a trisaccharide derivative, which was not separated, but directly O-deacetylated to give methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-giucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (8). Hydrogenolysls of the benzyl groups of 8 then furnished the title trisaccharide (9). A similar pflyccsylation of methyl 3-O-(2-acetamido-3-O-acetyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl- β-D-galactopyranoside (obtained by acetylation of 4, followed by hydrolysis of the benzylidene acetal group) with bromide 1 gave a tribenzyl trisaccharide, which, on catalytic hydrogenolysls, furnished the isomeric trisaccharide (12). Methylation of 4 and 2 with methyl iodide-silver oxide in 1:1 dichloro-methane-N, N-dimethylformamide gave the 3-O- and 4-O-monomethyl ethers (13) and (15), respectively. Hydrogenolysis of the benzyl groups of 13 and 15 then provided the title monomethylated disaechartdes (15) and (16), respectively. The structures of trisacchacides 9 and 12, and disaccharides 14 and 16 were all established by 13C MMR spectroscopy.  相似文献   

8.
Abstract

A scheme of asymmetric synthesis of C-glycosyl α-glycines is described. Reductive hydrolysis of 2-deoxy-3,5-di-O-p-toluoyl-β D-erythropentofuranose 1-cyanide (4) in the presence of N,N-diphenylethylenediamine gave the imidazolidine 5, which was converted to 2,5-anhydro-3-deoxy-4,6-di-O-p-toluoyl-β-D-allose (3)by acid hydrolysis. The aldehyde (3), chiralamine, benzoic acid and t-butyl isocyanide four component condensation afforded in good yield two diastereomeric adducts (6a and 6b), which were separated by column chromatography and deblocked to furnish 2-deoxy-β-D-erythropentofuranosyl R and S-glycines (1a) and (1b).  相似文献   

9.
Abstract

Acid hydrolysis of 6-deoxy-1,2-O-isop ropylidene-α-d-xylo-hexo-furanos-5-ulose (4) yielded gummy 6-deoxy-d-xylo-hexos-5-ulose (1) as an isomeric mixture of two furanose forms, 6-deoxy-α-d-xylo-hexo-furanos-5-ulose and 6-deoxy-β-d-xylo-hexofuranos-5-ulose, and a pyranose structure 1R, 5R-6-deoxy-d-xylo-hexopyranos-5-ulose. The combined percentage (64%) of the furanoses represents an unusually large amount of free carbonyl form for a sugar when compared to simple hexoses and 2-hexuloses. Isomeric structures were determined in deuterium oxide solution by 1H and 13C NMR.  相似文献   

10.
α-Dithiophosphates of peracetylated 2-deoxyhexc-pyranoses, 1a, 1b and 2, uhich are easily prepared by addition of organic phosphorodithioic acids to glycais react smoothly with resin-bound 2- and 4-nitrophenoxides to give stereoselectively the respective nitrophenyl 2-deoxy-β-D-hexopyranosides (3, 4, 5 and 6) in high yields. Glycosylation of the 2, 4-dinitro'phenoxide, however, leads with comparable stereoselectivity to 2,4-dinitrophenyl 2-deoxy- α-D-hexopyranosides (7 and 8).

Glycosides 3 - 6 are quantitatively deacetylatec by Amberlyst A-26 (OH-), whereas glycosides 7 and 8, under the same reaction conditions undergo splitting of the O-glycosidic bond.  相似文献   

11.
Abstract

N-[2-S-(2-Acetamido-2,3-dideoxy-D-glucopyranose-3-y1)-2-thio-D-lactoyl]-L-alanyl-D-isoglutamine, in which the oxygen atom at C-3 of N-acetylmuramoic acid moiety in N-acetylmuramoyl-L-alanyl-D-isoglutamine (MDP) has been replaced by sulfur, was synthesized from allyl 2-acetamido-2-deoxy-β-D-glucopyranoside (1).

Treatment with sodium acetate of the 3-O-mesylate, derived from 1 by 4,6-O-isopropylidenation and subsequent mesylation, gave allyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-allopyranoside (4). When treated with potassium thioacetate, the 3-O-mesylate, derived from 4, afforded allyl 2-acetamido-3-S-acetyl-2-deoxy-4,6-0-isopropylidence-β-D-glucopyranoside (6). S-Deacetylation of 6, condensation with 2-L-chloropropanoic acid, and subsequent esterification, gave the 3-s[D-1(methoxycarbonyl)ethyl]-3-thio-glucopyranoside derivative (7). Coupling of the acid, derived from 7, with the methyl ester of L-alanyl-D-isoglutamine, and subsequent hydrolysis, yielded the title compound.  相似文献   

12.
Abstract

Regioselective cleavage of 1,6-anhydro-maltose (1) with periodate and the subsequent recyclization with nitromethane gave 1,6-anhydro-3′-deoxy-3′-nitro-disaccharides (3). Three diastereomers, prepared by benzylidenation of 3, were separated by column chromatography. Each of 4′,6′-O-benzylidene derivatives successively underwent debenzylidenation, reduction of the nitro group, and peracetylation to give 3′-acetamido-3′-deoxy-disaccharide derivatives (7, 8, and 9). The configurations of the 3-amino sugar moietres in 7 (D-gluco), 8 (D-manno) and 9 (D-galacto) were determined on the basis of the 1H NMR data. The main product (7) was further modified to the 6-deoxy-6-nitro derivative.  相似文献   

13.
Bromoacetylation of methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β-D-galactopyranoside, followed by the cleavage of the methoxy group from the resulting 6-O-bromoacetyl derivative 2 with 1,1-dichloromethyl methyl ether gave 2,4-di-0-benzoyl-6-0-bromoacetyl-3-deoxy-3-fluoro-α-D-galactopyranosyl chloride (3). Reaction of 3 with methyl 2,3,4-tri-O-benzoyl-β-D-galactopyranoside promoted by silver trifluoromethanesulfonate afforded methyl 0-(2,4-di-O-benzoyl-6-O-bromoacetyl-3-deoxy-3-fluoro-β-D-galacto-pyranosyl)-(1→6)-2,3,4-tri-O-benzoyl-β-D-galactopyranoside (5). O-Debromoacetylation of 5 with thiourea gave the disaccharide nucleophile 6 which was condensed with 2,3,4,6-tetra-O-benzoyl-α-D-galactopyranosyl bromide to afford the expected β-(trans)-linked trisaccharide derivative 7. Debenzoylation of 7 gave the methyl β-glycoside 8 of the (1→6)-linked D-galactotriose having the HO-3 of the internal residue replaced by a fluorine atom. Compound 8 was used to further delineate the subsites in the combining area of the monoclonal anti-(1→6)-β-D-galactan-specific immunoglobulin IgA J539.  相似文献   

14.
Abstract

Reactions of 2′,3′,4′,2″,6″-penta-O-acetyl-tetra-N-tert-butyloxycarbonyl-kanamycin-A-4″-brosylate (4b) or-4″-triflate (4c) with acetate, thiolacetate, azide, and fluoride, respectively, result in the formation of the corresponding derivatives of 4″-epi-kanamycin A (5a-d). While 4b invariably forms an elimination byproduct (9), the only side—reaction of 4c consists in a neighboring group attack with formation of a 3″-epi-4″-cyclic urethane (7). Removal of the protecting groups yields 4″-epi-(6a), 4″-thio-4″-epi-(6b), 4″-deoxy-4″-fluoro-4″-epi-(6d), 4″-azido-4″-deoxy-4″-epi-(6c), and after hydrogenation of the latter, 4″-amino-4″-deoxy-4″-epi-kanamycin A (6f).

Methyl 2,6-di-O-acetyl-3-amino-3-N-tert-butyloxycarbonyl-3-deoxy-4-O-triflyl-β-D-glucopyranoside (1b) served as a model to anticipate preparation, handling, and reactivity of 4c.  相似文献   

15.
Several years ago in the course of work directed toward the total synthesis of the iboga alkaloids1, we required relatively large quantities of 2-ethyl-4-carboxycyclonhexanone (1) and its methyl ester as precursors to 3-ethyl-5-carbomethoxycyclohexene. Although it was possible to prepare keto acid 2 from 1,3,5-tricarbomethoxypentane (3) following the published synthesis of 2-methyl-4-carboxycyclohexanone2, the overall yield was only 52%. 3 In addition, the isolation and purification of intermediates 4 renders the synthesis rather tedious.  相似文献   

16.
In a report on the reaction of 2-chloronitrobenzene (1) with diethanolamine (2), Meltsner et al 1 claim that the expected SNAr product, N-(2-nitrophenyl)diethanolamine (3), is not formed; rather that the products are 2,2′-dichloroazobenzene (4), 2-nitrophenol (5), 2-chloroaniline (6) and 4-(2-aminophenyl)morpholine (7). Similar products in which the nitro function is reduced are also reported2 for the corresponding reaction with ethanolamine. In this laboratory, in an attempted preparation of 2,2′-dichloroazobenzene (4) for reference purposes in photochemical studies on the antineoplastic agent 5-(3-azido-4-chlorophenyl)-6-ethyl-pyrimidin-2,4-diamine3, the expected SNAr product (3) was obtained along with other products.  相似文献   

17.
Abstract

The reactions of bromide, chloride, and iodide ions with 1,3,4, 6-tetra-O-acetyl-2-O-(trifluoromethylsulfonyl) -α-D-glucopyranose (2) and with 1, 3, 4, 6-tetra-O-acetyl-2-O-(trifluoromethylsulfonyl)-β-D-mannopyranose (3) gave good to excellent yields of the corresponding deoxyhalogeno sugars. In contrast, when the gluco triflate 2 and tetra-butylammonium fluoride were heated under reflux in benzene, only 5-(acetoxymethyl)-2-formylfuran (13) was formed. Reaction of the manno triflate 3 under similar conditions produced 1, 3,4, 6-tetra-O-acetyl-2-deoxy-2-fluoro-β-D-gluco-pyranose (17), 1. 3, 4. 6-tetra-O-acetyl-2-deoxy-β-D-erythro-hex-2-eno-pyranose (18), 4,6-di-O-acetyl-1, 5-anhydro-2-deoxy-D-erythro-hex-l-enitol-3-ulose (19), and 1, 2, 3, 4, 6-penta-O-acetyl-β-D-glucopyranose (20). The mechanisms of the reactions of The triflates 2 and 3 with fluoride ion are discussed.  相似文献   

18.
Abstract

A synthesis for L-streptose (1) is described. This synthesis differs from those previously reported in several ways, one of which is the use of photochemical reactions in two important steps. These reactions are part of a sequence leading from L-arabinose (2) to 5-deoxy-1,2-O-isopropylidene-β-L-threo-pentofuranos-3-ulose (3). Two other photochemical reactions are considered as a part of the conversion of 3 into L-streptose (1) but neither proved useful. L-Streptose (1) is synthesized from 3 by a sequence of reactions which involves formation of 5-deoxy-l,2-O-isopropylidene-3-C-nitromethyl-β-L-lyxo-furanose (10) and subsequent reaction of 10 with titanium(III) chloride.  相似文献   

19.
Abstract

L-Oleandrose is the carbohydrate constituent of the potent anthelmintic agents the avermectins. Diethylaminosulfur tri-fluoride treatment of appropriate uloses did not give gem-difluoro sugars. Trifluorofluoroxymethane or xenon difluoride addition to the double bond of 4-O-benzoyl-6-deoxy-2-fluoro-3-O-methyl-L-glucal produced protected 2,2-difluorooleandrose derivatives activated at their anomeric center and ready for glycosidation.  相似文献   

20.
Both the direct2 and the sensitized3,4 photolyses of (E)-β-ionol (2) have been studied in some detail. In a preliminary publication5 we have indicated that direct photolyses of (E)-β-ionol (2) with λ = 254 nm yields (Z)-retro-γ-ionol (3) as the primary product; upon further irradiation 3 is converted into the corresponding (E)-isomer (4) which rapidly yields the bicyclic alcohol 5. A quantitative study revealed that the photoconversion of (E)-β-ionol with λ = 254 nm to 3 is about 10 times faster than the conversion of 3 into (E)-retro-γ-ionol.6 This rate difference thus allows the photosynthesis of 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号