首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface free energies of polyethylene terepthalate fibers with different draw ratios were experimentally determined by contact angle measurements inn-alkane/water systems. The dispersive component of the surface free energy increased with increasing draw ratio, whereas the nondispersive one remained almost constant. After heat treatment, the dispersive surface free energy increased, but was reduced above 140°C. The nondispersive component increased by heat treatment at 190°C. The increases in the density and birefringence of the fibres due to the drawing and heat treatment suggested that the increase in the dispersive surface free energy was caused by the increase in the atomic density at the fiber surface due to drawing and heat treatment. ESCA results indicated that the increment in the nondispersive surface free energy due to heat treatment was caused by the addition of functional groups to the fiber surface due to heat treatment.  相似文献   

2.
Wetting force at three-phase line was measured by the Wilhelmy technique using fibrous solids/liquid/liquid systems. Advancing and receding contact angles were calculated from the wetting forces during fiber immersion and emersion. The obtained results showed that contact angle hysteresis was due to the heterogeneity of the fiber surfaces. The dispersive and polar components of surface free energies of the fibers were determined from the advancing and receding contact angles, respectively. The Hamaker constants of the fibers were estimated from the dispersive components of their surface free energies.  相似文献   

3.
Potassium permanganate was applied to improve the surface properties of the ultra‐high molecular weight polyethylene (UHMWPE) fibers. The results suggested that the surface oxygen atoms increased dramatically and the O/C ratio increased from 0.030 to 0.563 after treatment. The increased surface roughness and the O‐containing groups on the treated fiber surface decreased the contact angles with water and ethylene glycol. The crystallinity and the crystallite size of the treated fibers increased, and the DSC results indicated that chain scission and the formation of ―C═O chemical defects in the amorphous region were the main mechanisms of the deterioration of the treated UHMEPE fibers. The breaking strength and the elongation at break of the fibers decreased, but the modulus increased after treatment. The treated fibers exhibited better adhesion with epoxy matrix. An improvement of 27.6% from 101.4 to 129.4 MPa in ILSS confirmed the improvement in the interfacial adhesion strength of composites. The impact and bending strength of composites were both improved.  相似文献   

4.
Ultra‐high molecular weight polyethylene (UHMWPE) fibers were modified by chromic acid. The effects of surface modification were evaluated with Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electron microscope (SEM). The results showed that both the content of O‐containing functional groups and surface roughness of modified fibers increased. The polar groups on the modified fiber surface decreased the contact angles with water and ethylene glycol, as evidenced by contact angle measurement. The tensile test results showed the strength and the elongation at break of UHMWPE fibers decreased but the modulus increased after chromic acid modification. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Polyimide surfaces exposed to simulated low Earth orbit space environment, i.e., under hyperthermal atomic oxygen bombardment, were characterized by using atomic force microscopy, X-ray photoelectron spectroscopy, and contact angle measurements. The surface analytical results showed that the roughness and the O/C ratio at the atomic oxygen-exposed polyimide surface increased with increasing atomic oxygen fluence. The advancing and receding contact angles decreased with increasing O/C ratios at the polyimide surfaces. The Lifshitz-van der Waals component, the acid and base parameters of the surface free energy of polyimide films were calculated from the contact angles. The base parameter increased with increasing O/C ratio, whereas the acid parameter and the Lifshitz-van der Waals component did not show a remarkable change. These analytical results agree with the in situ XPS data showing the formation of surface functional groups due to atomic oxygen exposure. It was demonstrated in this study that the polyimide surface in a low Earth orbit space environment may become hydrophilic due to the bombardment by atomic oxygen. Received: 4 December 1999 Accepted: 31 August 2000  相似文献   

6.
《先进技术聚合物》2018,29(4):1287-1293
The surface treatment of ultra‐high molecular weight polyethylene fiber using potassium permanganate and the mechanical properties of its epoxy composites were studied. After treatment, many changes were happened in the fiber surface: more O‐containing groups (―OH, ―C═O, and ―C―O groups), drastically decreased contact angles with water and ethylene glycol, slightly increased melting point and crystallinity, and formed cracks. Different contents (0.1–0.5 wt%) ultra‐high molecular weight polyethylene fibers/epoxy composites were prepared. The results indicated that the surface treatment decreased the tensile strength of epoxy composites, but increased the bending strength. When the fiber content was 0.3 wt%, the above properties reached the maximum. At the same fiber content, the interlaminar shear strength of the composites was increased by 26.6% up to the as‐received fiber composites. Dynamic mechanical analysis of the composites suggested the storage modulus and tanδ were decreased due to the surface treatment. Fractured surface analysis confirmed that the potassium permanganate treatment was effective in improving the interface interaction.  相似文献   

7.
In this study, we investigated the effects of liquid ammonia treatment on the surface characteristics of hemp fibers. We determined the elemental composition, morphological structure, roughness, and wettability of fiber surface using techniques such as electron spectroscopy for chemical analysis, scanning electron microscopy, atomic force microscopy, and contact angle measurements. The lignin coverage on the hemp surface was calculated from the O/C ratio and the C1 content. The results show that lignin removal from the fiber surface was significantly greater than that from the fiber bulk. After the treatment, the O/C ratio of hemp fibers increased, and cellulose was exposed. The proportion of O2 species that contributed to formation of hydrogen bonds increased; this further increased the number of hydrophilic groups in the hemp fibers, improving the fiber wettability. The liquid ammonia treatment did not change the large dislocation structures in hemp fibers, but the removal of noncellulosic materials from the fiber surface increased the roughness of the fiber surface.  相似文献   

8.
Polyacrylonitrile‐based carbon fibers were modified by oxidation in air, and a systematic study of surface groups and surface resistance at different treated temperatures was made. Progressive fiber weight loss occurred with increasing extents of air oxidation, and it was approximately proportional to the extent of air oxidation from the onset of oxidation up to 400 °C. At this point 4.4% of the initial fiber weight had been lost. A faster loss of weight occurred as the extent of air oxidation increased from 400 °C to 700 °C. X‐ray photoelectron spectroscopy studies (C 1s and O 1s) indicated that the oxygen/carbon atomic ratio rose rapidly from 2.64% (as‐received carbon fiber) to 42.83% as the oxidation temperature was increased to 400 °C. Fourier transform infrared spectra showed the relative intensity of the peaks at about 3440 cm?1 from ―OH stretching vibrations and at 1634 cm?1 from ―C?O stretching vibrations increased significantly at 400 °C. FESEM micrographs showed that as‐received fibers show relatively smooth surface. With oxidation temperature increasing, the fiber surface was rougher. The surface resistance of treated carbon fibers decreased obviously with increasing oxidation temperatures. The most decrease was about 100% at 400 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The wetting behavior of a series of aliphatic polyamides (PAs) has been examined. PAs with varying amide content and polyethylene (PE) were molded against glass to produce surfaces with similar roughness. After cleaning, chemical composition of the surfaces was verified with X-ray photoelectron spectroscopy. Advancing and receding contact angles were measured from small sessile water drops. Contact angles decreased with amide content while hysteresis increased. Hysteresis arose primarily from molecular interactions between the contact liquid and the solid substrates, rather than moisture absorption, variations in crystallinity, surface deformation, roughness, reorientation of amide groups, or surface contamination. Free energies of hysteresis were calculated from contact angles. For PE, which is composed entirely of nonpolar methylene groups, free energies were equivalent to the strength of dispersive van der Waals bonds. For PAs, free energies corresponded to fractional contributions from the dispersive methylene groups and polar amide groups.  相似文献   

11.
The surface free energy of polyacrylonitrile carbon fibers was investigated by using the Wilhelmy technique. The difference in surface free energy between immersion and emersion was observed for the carbon fiber pyrolyzed at 2500 °C.In contrast, the hysteresis disappeared with repyrolyzation of the carbon fibers at 3000 °C. Auger electron spectroscopic analysis indicated that the surface of the latter carbon fiber (repyrolyzed at 3000 °C) consisted of the basal planes of graphite. Rough surface topography of the carbon fiber repyrolyzed at 3000 °C, as observed by scanning electron microscope, did not affect the hysteresis. Therefore, the contact angle hysteresis was attributed to the chemical adsorbants on the activation sites of the fiber surfaces, as detected by Auger electron spectroscopy.  相似文献   

12.
Effect of temperature on the surface free energy of amorphous carbon films   总被引:5,自引:0,他引:5  
Diamond-like carbon (DLC) and tetrahedral amorphous carbon (ta-C) have attracted much attention recently for biomedical and antifouling applications due to their excellent biocompatibility and inherent nonstick properties. It has been demonstrated that the solid surface free energy is a dominant factor in cellular or fouling adhesion. However, few data for the surface free energy of DLC and ta-C coatings at temperatures in the range 37-95 degrees C are available. In this study DLC and ta-C coatings on stainless steel 304 sheets were prepared using an unbalanced magnetron sputtering system and a filtered cathodic vacuum arc system, respectively. The contact angles of water, diiodomethane and ethylene glycol on the coated surfaces at temperatures in the range 20-95 degrees C were measured using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (e.g., dispersion, polar or acid/base portions) were calculated using various methods. The experimental results showed that the total surface free energy and dispersive surface free energy of the ta-C coatings, DLC coatings, stainless steel 304 and titanium decreased with increasing surface temperature, while the acid-base SFE component increased with increasing temperature.  相似文献   

13.
采用溶胶-凝胶法, 在侧链带有羧基的线性不饱和聚酯中加入正硅酸乙酯(TEOS), 使TEOS在酸性条件下发生水解反应, 原位合成纳米SiO2增强阴离子型聚酯乳液(SEAPE). 利用傅里叶变换红外光谱(FTIR)仪、 激光粒度分析仪和冷冻扫描电子显微镜(Cryo-SEM)对SEAPE进行分析与表征. 将SEAPE与聚乙二醇单油酸酯润滑剂、 非离子型表面活性剂FC-4430及抗氧剂1010进行复配, 原位制备纳米SiO2增强阴离子型聚酯乳液上浆剂(SEAPEs), 用扫描电子显微镜(SEM)、 视频动态接触角测量仪、 X射线能谱(EDS)仪和纤维强力仪对SEAPEs上浆后碳纤维的表面形貌、 表面能、 碳纤维(CF)表面元素及碳纤维增强不饱和聚酯(UPR)复合材料(CF/UPR)的层间剪切强度(ILSS)进行测试与表征. 结果表明, 当TEOS添加质量分数为5%时, SEAPEs上浆后的碳纤维有效增强了其与UPR的结合强度, CF/UPR复合材料的ILSS达到40.03 MPa, 与市售环氧树脂型上浆剂上浆后碳纤维增强UPR复合材料相比, ILSS提高90.1%. SEAPEs中原位生成的纳米SiO2分散均匀, 乳液储存稳定, 上浆后SiO2均匀吸附在碳纤维表面, 增加碳纤维表面能, 改善碳纤维与树脂间的浸润性, 可有效提高碳纤维增强不饱和聚酯树脂复合材料的ILSS.  相似文献   

14.
热解条件对LiFePO4/C表面自由能的影响   总被引:1,自引:0,他引:1  
以葡萄糖为碳前驱体对水热合成的磷酸铁锂粉末进行碳包覆. 测定磷酸铁锂粉末与三种探测液的接触角, 并据此通过Young方程采用Wu方法计算了粉末的表面自由能. 研究了表面自由能与电导率、放电比容量的关系及对工业化涂布性能的影响. 结果表明, 在电导率相同的前提下, 粉末表面自由能中色散分量与极性分量的比值(γd/γp)对低倍率放电性能没有影响, 但对高倍率放电性能影响较大. 提高热解温度和延长热解时间可使γd/γp值增加, 这有利于粉体与聚偏氟乙烯(PVdF)的粘合和高倍率放电容量的提高.  相似文献   

15.
The wetting behavior of a series of aliphatic polyamides was examined. Polyamides and polyethylene were molded against glass to produce smooth surfaces. After cleaning, chemical composition of the surfaces was verified with X-ray photoelectron spectroscopy. Advancing and receding contact angles were measured from small sessile water drops. Contact angles decreased with amide content while contact angle hysteresis increased. Wetting free energies calculated from contact angles were equal to those from dewetting, suggesting that contact angle hysteresis did not arise from surface anomalies, but from hydrogen bonding between water and the amide groups in the polyamide surfaces.  相似文献   

16.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

17.
Oxygen plasma is widely employed for modification of polymer surfaces. Plasma treatment process is a convenient procedure that is also environmentally friendly. This study reports the effects of oxygen plasma treatment on the surface properties of poly(p‐phenylene terephthalamide) (PPTA) fibers. The surface characteristics before and after oxygen plasma treatment were analyzed by XPS, atomic force microscopy (AFM) and dynamic contact angle analysis (DCAA). It was found that oxygen plasma treatment introduced some new polar groups (O? C?O) on the fiber surface, increased the fiber surface roughness and changed the surface morphologies obviously by plasma etching and oxidative reactions. It is also shown that the fiber surface wettability was improved significantly by oxygen plasma treatment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Conductive polythiophene (PTh)/poly(ethylene terephthalate) (PET) composite fibers were prepared by polymerization of thiophene in the presence of PET fibers in acetonitrile medium using FeCl3. The effects of polymerization conditions such as oxidant/monomer mol ratio and polymerization temperature and time on PTh content and surface electrical resistivity of PTh/PET composite fiber were investigated in detail. It was observed that the usage of preswelled PET fibers in dichloromethane increased the PTh content and decreased surface resistivity of composite fiber. Composite fiber having the highest PTh content (5.7%) and the lowest surface resistivity (80 kΩ) was obtained at 20°C with 1.25 M FeCl3 and 0.42 M thiophene concentrations. The washing effects of laundering detergent and dry cleaning liquid on surface resistivity of composite fibers were investigated. The electromagnetic shielding effectiveness (EMSE) and relative shielding efficiency by absorption and reflection of composite fibers were measured in the radio and microwave frequency range. The results show that the EMSE values decreased with increasing frequency from radio waves to microwaves with an attenuation of 21 dB to 4 dB.  相似文献   

19.
An effective way to prepare graphene oxide/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. Surface functional group, surface roughness, and surface morphologies of carbon fibers were examined by Fourier transform infrared spectrometer, atomic force microscopy, and scanning electron microscopy. Results showed that a uniform and thick graphene oxide films were constructed on the surface of carbon fiber. Deposition density increased by introduction of pretreatment of the carbon fiber in the electrophoretic deposition process has been shown as a possible method. Dynamic contact angle analysis results indicated that the deposition of graphene oxide significantly improved surface free energy of carbon fiber by increasing surface area and polar groups. The introduction of graphene oxide in the carbon fiber‐reinforced epoxy composites results in a 55.6% enhancement in the interfacial shear strength and confirms the remarkable improvement in the interfacial adhesion strength of the composites, and the fracture mechanism was also analyzed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
利用场发射环境扫描电境(FESEM)测定了室温下环氧树脂在单纤维表面的接触角,观测并计算了环氧树脂液滴在单根碳纤维表面的接触角随温度的变化,结果表明接触角随温度升高明显降低,说明升高温度有利于改善环氧树脂对碳纤维的浸润性能.用液滴形状分析仪(DSA)在垂直和平行于纤维排列方向上观测了不同温度下单向排列碳纤维集束表面环氧树脂的铺展过程,发现在不同方向上观测到的接触角差别较大,其中垂直于纤维排列方向上观测到的接触角随温度的变化与环氧树脂在单根碳纤维表面的接触角变化基本一致,说明环氧树脂在平行于纤维束方向的接触角真正代表其浸润性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号