首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Contact line and contact angle dynamics in superhydrophobic channels   总被引:1,自引:0,他引:1  
The dynamics of the wetting and movement of a three-phase contact line confined between two superhydrophobic surfaces were studied using a mean-field free-energy lattice Boltzmann model. Principle features of superhydrophobic surfaces, such as trapped vapor/air between rough microstructures, high contact angles, reduced contact angle hysteresis, and low resistance to fluid flow, were all observed. Movement of the three-phase contact line over a well-patterned superhydrophobic surface displays a periodic stick-jump-slip behavior, while the dynamic contact angle changes accordingly from maximum to minimum. Two regimes were found for the flow velocity as a function of surface roughness and can be related directly to the balance between driving force and flow resistance. This work provides a better understanding of dynamic wetting and fluid flow behaviors over superhydrophobic surfaces and hence could be useful in related applications.  相似文献   

2.
Surface roughness amplifies the water-repellency of hydrophobic materials. If the roughness geometry is, on average, isotropic then the shape of a sessile drop is almost spherical and the apparent contact angle of the drop on the rough surface is nearly uniform along the contact line. If the roughness geometry is not isotropic, e.g., parallel grooves, then the apparent contact angle is no longer uniform along the contact line. The apparent contact angles observed perpendicular and parallel to the direction of the grooves are different. A better understanding of this problem is critical in designing rough superhydrophobic surfaces. The primary objective of this work is to determine the mechanism of anisotropic wetting and to propose a methodology to quantify the apparent contact angles and the drop shape. We report a theoretical and an experimental study of wetting of surfaces with parallel groove geometry.  相似文献   

3.
Cassie and Wenzel: were they really so wrong?   总被引:3,自引:0,他引:3  
The properties of superhydrophobic surfaces are often understood by reference to the Cassie-Baxter and Wenzel equations. Recently, in a paper deliberately entitled to be provocative, it has been suggested that these equations are wrong; a suggestion said to be justified using experimental data. In this paper, we review the theoretical basis of the equations. We argue that these models are not so much wrong as have assumptions that define the limitations on their applicability and that with suitable generalization they can be used with surfaces possessing some types of spatially varying defect distributions. We discuss the relationship of the models to the previously published experiments and using minimum energy considerations review the derivations of the equations for surfaces with defect distributions. We argue that this means the roughness parameter and surface area fractions are quantities local to the droplet perimeter and that the published data can be interpreted within the models. We derive versions of the Cassie-Baxter and Wenzel equations involving roughness and Cassie-Baxter solid fraction functions local to the three-phase contact line on the assumption that the droplet retains an average axisymmetry shape. Moreover, we indicate that, for superhydrophobic surfaces, the definition of droplet perimeter does not necessarily coincide with the three-phase contact line. As a consequence, the three-phase contact lines within the contact perimeter beneath the droplet can be important in determining the observed contact angle on superhydrophobic surfaces.  相似文献   

4.
We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasistatically increased and decreased. We consider both two (cylindrical drops) and three (spherical drops) dimensions using analytical and numerical approaches to minimize the free energy of the drop. In two dimensions, we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions, this behavior persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions, we identify analytically the advancing and receding contact angles on the different surfaces, and we use numerical insights to argue that these provide bounds for the three-dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.  相似文献   

5.
The spreading of surfactant solutions over hydrophobic surfaces is considered from both theoretical and experimental points of view. Water droplets do not wet a virgin solid hydrophobic substrate. It is shown that the transfer of surfactant molecules from the water droplet onto the hydrophobic surface changes the wetting characteristics in front of the drop on the three-phase contact line. The surfactant molecules increase the solid-vapor interfacial tension and hydrophilize the initially hydrophobic solid substrate just in front of the spreading drop. This process causes water drops to spread over time. The time of evolution of the spreading of a water droplet is predicted and compared with experimental observations. The assumption that surfactant transfer from the drop surface onto the solid hydrophobic substrate controls the rate of spreading is confirmed by our experimental observations. Copyright 2000 Academic Press.  相似文献   

6.
Superhydrophobic surfaces have recently attracted a lot of attention due to their self-cleaning properties. The superhydrophobic surfaces used in our studies were prepared using a mixed inorganic-organic coating. In order to check how short chain surface active agents affect the surface energy of such surfaces, their wettability (sessile drop technique) and the kinetics of the three phase contact formation were studied. It was found that with increasing concentrations of n-hexanol and n-octanol the surface energy of these surfaces was only slightly changed, i.e. a small decrease in contact angle values with increasing solution concentration was detected. Even for the most concentrated n-hexanol and n-octanol solutions, the contact angles were in the range 145-155° and the drop rolled off, indicating that the studied surfaces stayed superhydrophobic. Air bubbles, upon collision with such superhydrophobic surfaces, spread over the superhydrophobic surface within milliseconds in the studied solutions.  相似文献   

7.
The impact dynamics of water drops on sized and unsized smooth cellulose films and paper surfaces with controlled roughness levels were studied. The objective was to better understand the effect of roughness on the liquid drop impact dynamics on paper surfaces, isolating from the effect chemical heterogeneity. Drop impact in the first few milliseconds were recorded using high-speed CCD camera and the three-phase contact line movement of the water drop was analyzed. Smooth cellulose film surface and rough paper surface showed similar impact dynamics, suggesting that the surface energy plays a more dominant role than surface roughness. Significantly different dynamic contact angles of water drop on the sized and unsized surfaces were observed during drop impact. The Laplace pressure of the curved spreading front pointing to the centre of a spreading drop on these sized cellulose and paper surfaces reduces the three-phase contact line movement, and leads to smaller maximum spreading diameter. Our results suggest that the water drop spreads on the rough surface is most likely via a “roll-over” action rather than “stick and jump” movements.  相似文献   

8.
Submersed superhydrophobic surfaces exhibit great potential for reducing flow resistance in microchannels and drag of submersed bodies. However, the low stability of liquid-air interfaces on those surfaces limits the scope of their application, especially under high liquid pressure. In this paper, we first investigate the wetting states on submersed hydrophobic surfaces with one-level structure under hydrostatic pressure. Different equilibrium states based on free-energy minimization are formulated, and their stabilities are analyzed as well. Then, by comparison with the existing numerical and experimental studies, we confirm that a new metastable state, which happens after depinning of the three-phase contact line (TCL), exists. Finally, we show that a strategy of using hierarchical structures can strengthen the TCL pinning of the liquid-air interface in the metastable state. Therefore, the hierarchical structure on submersed surfaces is important to further improve the stability of superhydrophobicity under high liquid pressure.  相似文献   

9.
The surface structure is known to significantly affect the long-range capillary forces between hydrophobic surfaces in aqueous solutions. It is, however, not clear how small depressions in the surface will affect the interaction. To clarify this, we have used the AFM colloidal probe technique to measure interactions between hydrophobic microstructured pore array surfaces and a hydrophobic colloidal probe. The pore array surfaces were designed to display two different pore spacings, 1.4 and 4.0 μm, each with four different pore depths ranging from 0.2 to 12.0 μm. Water contact angles measured on the pore array surfaces are lower than expected from the Cassie-Baxter and Wenzel models and not affected by the pore depth. This suggests that the position of the three-phase contact line, and not the interactions underneath the droplet, determines the contact angle. Confocal Raman microscopy was used to investigate whether water penetrates into the pores. This is of importance for capillary forces where both the movement of the three-phase contact line and the situation at the solid/liquid interface influence the stability of bridging cavities. By analyzing the shape of the force curves, we distinguish whether the cavity between the probe and the surfaces was formed on a flat part of the surface or in close proximity to a pore. The pore depth and pore spacing were both found to statistically influence the distance at which cavities form as surfaces approach each other and the distance at which cavities rupture during retraction.  相似文献   

10.
A novel method to fabricate superhydrophobic surfaces using electrophoretic deposition (EPD) is presented. EPD presents a readily scalable, customizable, and potentially low cost surface manufacturing process. Low surface energy materials with high surface roughness are achieved using EPD of unstable hydrophobic SiO(2) particle suspensions. The effect of suspension stability on surface roughness is quantitatively explored with optical absorbance measurements (to determine suspension stability) and atomic force microscopy (to measure surface roughness). Varying suspension pH modulates suspension stability. Contrary to most applications of EPD, we show that superhydrophobic surfaces favor mildly unstable suspensions since they result in high surface roughness. Particle agglomerates formed in unstable suspensions lead to highly irregular films after EPD. After only 1 min of EPD, we obtain surfaces with low contact angle hysteresis and static contact angles exceeding 160°. We also present a technique to enhance the mechanical durability of the superhydrophobic surfaces by adding a polymeric binder to the suspension prior to EPD.  相似文献   

11.
Computational and theoretical models of millimeter-sized bubbles placed on upright hydrophobic and superhydrophobic surfaces are compared with experimental data here. Although the experimental data for a hydrophobic surface corroborated the computational and theoretical data, the case of a superhydrophobic surface showed the bubbles to be able to contain significantly larger volumes than predicted. This is attributed to the greater ability of the bubble contact line to advance compared with its tendency to detach from the surface because of buoyancy. We surmise that a static model therefore describes only an unstable equilibrium for these bubbles, which unless heavily isolated from external influences are more likely to assume a larger stable size.  相似文献   

12.
The effect that nanoparticles play in the spreading of nanofluids dynamically wetting and dewetting solid substrates is investigated experimentally, using 'drop shape' analysis technique to analyse aluminium-ethanol contact lines advancing and receding over hydrophobic Teflon-AF coated substrates. Results obtained from the advancing/receding contact line analysis show that the nanoparticles in the vicinity of the three-phase contact line enhance the dynamic wetting behaviour of aluminium-ethanol nanofluids for concentrations up to approximately 1% concentration by weight. Two mechanisms were identified as a potential reason for the observed enhancement in spreading of nanofluids: structural disjoining pressure and friction reduction due to nanoparticle adsorption on the solid surface. The observed 'lubricating effect' that the nanoparticles seem to be inducing is similar to the 'superspreading' effect for surfactant solutions spreading on hydrophobic surfaces, up to a concentration (weight) of approximately 1%, could be a result of the predicted enhanced wetting behaviour. Indeed, Trokhymchuk et al. [Langmuir, 2001, 17, 4940] observed a solid-like ordering of nanoparticles in the vicinity of the three-phase contact line, leading to an increased pressure in the fluid 'wedge'. This increased pressure leads to a pressure gradient which causes the nanofluids to exhibit enhanced wetting characteristics. Another possible cause for the observed increase in advancing/receding contact line velocity could be deposition of nanoparticles on the solid surface in the vicinity of the three-phase contact line resulting in the nanofluid effectively advancing over aluminium rather than Teflon-AF, or the contact line 'rolling' over nanoparticles at the three-phase contact line due to sphericity of nanoparticles. For either of these to be the case, the nanoparticle effect at the three-phase contact line would have to be enhanced for the lower concentration in the same way that it would have to be for the increased pressure in the fluid 'wedge'.  相似文献   

13.
This paper reports the electrowetting properties of ZnO nanorods. These nanorods were grown on indium tin oxide (ITO) substrates using different liquid-phase deposition techniques and hydrophobized with sputtered Teflon. The surfaces display superhydrophobic properties. When the applied voltages are less than 35 V, the contact angle change is small and exhibits instant reversibility. For higher voltages, larger contact angle changes were observed. However, the surface was not reversible after removing the applied voltage and required mechanical agitation to return to its initial superhydrophobic state.  相似文献   

14.
In this work, we investigate the configuration of the contact line of a water drop lying on an ultrahydrophobic post surface using the numerical algorithm Surface Evolver. For the special situation of Cassie wetting, we propose a modified definition of the contact line as the line in space where the meniscus starts to curve upward out of the plane of the composite surface. In our simulations, it is found that the contact line is very strongly distorted, indicating a strong tendency of the drop to "ball up" in those areas where it is not in contact with the solid surface. The distortion of the contact line corresponds to a pronounced deformation of the liquid-air interface around the base of the drop. We discuss the consequences of this distortion for the definition and practical measurement of the contact angle on ultrahydrophobic surfaces.  相似文献   

15.
A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed.  相似文献   

16.
Obtaining superhydrophobic surfaces for their application in electronics and flexible wearable devices remains a significant challenge. Most previously reported methods for obtaining superhydrophobic surfaces involve complex and expensive preparation techniques and thus cannot be used for practical applications. Ion-beam irradiation is a simple and promising method for fabricating superhydrophobic nanostructures on large areas at a low cost. Ion-beam irradiation using argon and oxygen gases was used to prepare silica nanorod structures on glass substrates. This study is not just a modification of the surface of nanoparticles, but a change in nanoparticle shape. The nanorods were subsequently treated with perfluorooctyltriethoxysilane to obtain superhydrophobicity. The surface of the silica nanorods exhibited a static water contact angle of 153°, indicating superhydrophobicity. The combination of rough structures of silica nanorods and low surface energy resulted in superhydrophobicity. The surface properties were evaluated in detail using Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The proposed method is facile, inexpensive, and can be used for the large-scale production of nanorod structures for potential industrial applications.  相似文献   

17.
Static and dynamic contact angles of aqueous solutions of three surfactants--anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethylammonium bromide (DTAB), and nonionic pentaethylene glycol monododecyl ether (C(12)E(5))--were measured in the pre- and micellar concentration ranges on polymer surfaces of different surface free energy. The influence of the degree of substrate hydrophobicity, concentration of the solution, and ionic/nonionic character of surfactant on the drop spreading was investigated. Evaporation losses due to relatively low humidity during measurements were taken into account as well. It was shown that, in contrast to the highly hydrophobic surfaces, contact angles for ionic surfactant solutions on the moderately hydrophobic surfaces strongly depend on time. As far as the nonionic surfactant is considered, it spreads well over all the hydrophobic polymer surfaces used. Moreover, the results obtained indicate that spreading (if it occurs) in the long-time regime is controlled not only by the diffusive transport of surfactant to the expanding liquid-vapor interface. Obviously, another process involving adsorption at the expanding solid-liquid interface (near the three-phase contact line), which goes more slowly than diffusion, has to be active.  相似文献   

18.
Artificial superhydrophobic surfaces are typically fabricated by tuning the surface roughness of intrinsically hydrophobic surfaces. We report here the design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrogen-terminated Si surfaces with an intrinsic water contact angle of approximately 74 degrees . The micro-textures consist of overhang structures with well-defined geometries fabricated by microfabrication technologies, which provide positions to support the liquid and prevent the liquid from entering into the indents between the micro-textures. As a result, water is in contact with a composite surface of solid and air, which induces the observed macroscopic superhydrophobic behavior.  相似文献   

19.
Hydrophilic paper was rendered with hydrophobic and superhydrophobic property after the treatment with solutions and nanoparticles of cellulose stearoyl ester (CSE), respectively. Cellulose stearoyl ester with a degree of substitution of 2.99 was synthesized from cellulose using stearoyl chloride. By dip-coating paper in CSE solution of at least 3 mg/ml in toluene, paper became hydrophobic with stable water contact angles of more than 120°. After further spray-coating using CSE nanoparticles that were prepared from CSE solution via nanoprecipitation, paper surface became superhydrophobic with water contact angles of larger than 150°. These superhydrophobic surfaces also exhibited self-cleaning character. Furthermore, the superhydrophobic paper surfaces showed a temperature-responsive character and could be turned hydrophobic after a heat-treatment at 70 °C for 5 min.  相似文献   

20.
By promoting dropwise condensation of water, nanostructured superhydrophobic coatings have the potential to dramatically increase the heat transfer rate during this phase change process. As a consequence, these coatings may be a facile method of enhancing the efficiency of power generation and water desalination systems. However, the microdroplet growth mechanism on surfaces which evince superhydrophobic characteristics during condensation is not well understood. In this work, the sub-10 μm dynamics of droplet formation on nanostructured superhydrophobic surfaces are studied experimentally and theoretically. A quantitative model for droplet growth in the constant base (CB) area mode is developed. The model is validated using optimized environmental scanning electron microscopy (ESEM) imaging of microdroplet growth on a superhydrophobic surface consisting of immobilized alumina nanoparticles modified with a hydrophobic promoter. The optimized ESEM imaging procedure increases the image acquisition rate by a factor of 10-50 as compared to previous research. With the improved imaging temporal resolution, it is demonstrated that nucleating nanodroplets coalesce to create a wetted flat spot with a diameter of a few micrometers from which the microdroplet emerges in purely CB mode. After the droplet reaches a contact angle of 130-150°, its base diameter increases in a discrete steplike fashion. The droplet height does not change appreciably during this steplike base diameter increase, leading to a small decrease of the contact angle. Subsequently, the drop grows in CB mode until it again reaches the maximum contact angle and increases its base diameter in a steplike fashion. This microscopic stick-and-slip motion can occur up to four times prior to the droplet coalescence with neighboring drops. Lastly, the constant contact angle (CCA) and the CB growth models are used to show that modeling formation of a droplet with a 150° contact angle in the CCA mode rather than in the CB mode severely underpredicts both the drop formation time and the average heat transfer rate through the drop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号