首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antiferromagnetic structures of the layered oxychalcogenides (Sr(1-x)Ba(x))(2)CoO(2)Cu(2)S(2) (0 ≤ x ≤ 1) have been determined by powder neutron diffraction. In these compounds Co(2+) is coordinated by four oxide ions in a square plane and two sulfide ions at the apexes of an extremely tetragonally elongated octahedron; the polyhedra share oxide vertexes. The magnetic reflections present in the diffraction patterns can in all cases be indexed using a √2a × √2a × c expansion of the nuclear cell, and nearest-neighbor Co(2+) moments couple antiferromagnetically within the CoO(2) planes. The ordered magnetic moment of Co(2+) in Sr(2)CoO(2)Cu(2)S(2) (x = 0) is 3.8(1) μ(B) at 5 K, consistent with high-spin Co(2+) ions carrying three unpaired electrons and with an additional significant unquenched orbital component. Exposure of this compound to moist air is shown to result in copper deficiency and a decrease in the size of the ordered moment to about 2.5 μ(B); there is a strong correlation between the size of the long-range ordered moment and the occupancy of the Cu site. Both the tetragonal elongation of the CoO(4)S(2) polyhedron and the ordered moment in (Sr(1-x)Ba(x))(2)CoO(2)Cu(2)S(2) increase with increasing Ba content, and in Ba(2)CoO(2)Cu(2)S(2), which has Co(2+) in an environment that is close to purely square planar, the ordered moment of 4.5(1) μ(B) at 5 K is over 0.7 μ(B) larger than that in Sr(2)CoO(2)Cu(2)S(2), so the unquenched orbital component in this case is even larger than that observed in octahedral Co(2+) systems such as CoO. The experimental observations of antiferromagnetic ground states and the changes in properties resulting from replacement of Sr by Ba are supported by ab initio calculations on Sr(2)CoO(2)Cu(2)S(2) and Ba(2)CoO(2)Cu(2)S(2). The large orbital moments in these systems apparently result from spin-orbit mixing of the unequally populated d(xz), d(yz), and d(z(2)) orbitals, which are reckoned to be almost degenerate when the CoO(4)S(2) polyhedron reaches its maximum elongation. The magnitudes of the ordered moments in high-spin Co(2+) oxide, oxychalcogenide, and oxyhalide systems are shown to correlate well with the tetragonal elongation of the coordination environment. The large orbital moments lead to an apparently magnetostrictive distortion of the crystal structures below the Nee?l temperature, with the symmetry lowered from tetragonal I4/mmm to orthorhombic Immm and the size of the distortion correlating well with the size of the long-range ordered moment for all compositions and for temperature-dependent data gathered on Ba(2)CoO(2)Cu(2)S(2).  相似文献   

2.
Endo T  Doi Y  Wakeshima M  Hinatsu Y 《Inorganic chemistry》2010,49(23):10809-10814
Synthesis, crystal structures, and magnetic properties of melilite-type oxides A(2)MSi(2)O(7) (A = Sr, Eu; M = Mg, Mn) were investigated. These compounds crystallize in the melilite structure with space group P4?2(1)m. The (151)Eu Mo?ssbauer measurements show that the Eu ions are in the divalent state. The Eu(2)MgSi(2)O(7) is paramagnetic down to 1.8 K. Long-range antiferromagnetic ordering is observed at 3.4 K for Sr(2)MnSi(2)O(7). On the other hand, the Eu(2)MnSi(2)O(7) shows a ferrimagnetic transition at 10.7 K. From the magnetization and specific heat measurements, it is found that the Eu(2+) (14 μ(B)) and Mn(2+) (5 μ(B)) sublattices order antiferromagnetically. This result indicates that an interaction between f-d electrons (Eu-Mn) predominantly operate in this compound.  相似文献   

3.
A series of layered oxides of nominal composition SrFe(1-x)Mn(x)O(2) (x = 0, 0.1, 0.2, 0.3) have been prepared by the reduction of three-dimensional perovskites SrFe(1-x)Mn(x)O(3-δ) with CaH(2) under mild temperature conditions of 583 K for 2 days. The samples with x = 0, 0.1, and 0.2 exhibit an infinite-layer crystal structure where all of the apical O atoms have been selectively removed upon reduction. A selected sample (x = 0.2) has been studied by neutron powder diffraction (NPD) and X-ray absorption spectroscopy. Both techniques indicate that Fe and Mn adopt a divalent oxidation state, although Fe(2+) ions are under tensile stress whereas Mn(2+) ions undergo compressive stress in the structure. The unit-cell parameters progressively evolve from a = 3.9932(4) ? and c = 3.4790(4) ? for x = 0 to a = 4.00861(15) ? and c = 3.46769(16) ? for x = 0.2; the cell volume presents an expansion across the series from V = 55.47(1) to 55.722(4) ?(3) for x = 0 and 0.2, respectively, because of the larger effective ionic radius of Mn(2+) versus Fe(2+) in four-fold coordination. Attempts to prepare Mn-rich compositions beyond x = 0.2 were unsuccessful. For SrFe(0.8)Mn(0.2)O(2), the magnetic properties indicate a strong magnetic coupling between Fe(2+) and Mn(2+) magnetic moments, with an antiferromagnetic temperature T(N) above room temperature, between 453 and 523 K, according to temperature-dependent NPD data. The NPD data include Bragg reflections of magnetic origin, accounted for with a propagation vector k = ((1)/(2), (1)/(2), (1)/(2)). A G-type antiferromagnetic structure was modeled with magnetic moments at the Fe/Mn position. The refined ordered magnetic moment at this position is 1.71(3) μ(B)/f.u. at 295 K. This is an extraordinary example where Mn(2+) and Fe(2+) ions are stabilized in a square-planar oxygen coordination within an infinite-layer structure. The layered SrFe(1-x)Mn(x)O(2) oxides are kinetically stable at room temperature, but in air at ~170 °C, they reoxidize and form the perovskites SrFe(1-x)Mn(x)O(3-δ). A cubic phase is obtained upon reoxidation of the layered compound, whereas the starting precursor SrFeO(2.875) (Sr(8)Fe(8)O(23)) was a tetragonal superstructure of perovskite.  相似文献   

4.
Na(10)Co(4)O(10) was investigated by neutron powder diffraction at 230, 70, and 4 K. The crystal structure, determined previously by X-ray diffraction on single crystals, was confirmed. Na(10)Co(4)O(10) orders magnetically below 37 K. All observed magnetic reflections could be indexed by integers (hkl) with respect to the chemical unit cell and the magnetic propagation vector q=0. The refinement was performed in the Shubnikov space group C2/c and indicated a collinear antiferromagnetic spin structure. The determined spin arrangement is consistent with the magnetic intratetramer interactions suggested previously from the analysis of magnetic susceptibility data: the magnetic moments of the central Co(III) ions of the Co(4)O(10) tetramer lie parallel to each other and couple in an antiparallel fashion to the terminal Co(II) moments. The Rietveld analysis shows that the net moments of 0.64 mu(B) per tetramer form ferromagnetic layers parallel to the ab plane. Adjacent layers are coupled antiferromagnetically along c. The spins are aligned in the ac plane along the line connecting adjacent Co(II) and Co(III) ions of the tetramer. We have determined unusually low values for the ordered magnetic moments of 2.43(5) mu(B) and 2.11(6) mu(B) for Co(III) and Co(II), respectively. The occurrence of spontaneous magnetization below 37 K indicates a slight canting of 2.2 degrees of the antiferromagnetic structure. A representation analysis shows that a weak ferromagnetic component along b is compatible with the determined antiferromagnetic structure.  相似文献   

5.
The crystal, electronic, and magnetic structures of the cobalt oxyselenide La(2)Co(2)O(3)Se(2) were investigated through powder neutron diffraction measurements and band structure calculations. This oxyselenide crystallizes in a tetragonal layered structure with space group I4/mmm. The Co ion is sixfold-coordinated by two oxide ions and four selenide ions, and the face-sharing CoO(2)Se(4) octahedra form Co(2)OSe(2) layers. The band structure calculations revealed that the Co ion is in the divalent high-spin state. Rietveld analysis of the neutron diffraction profiles below 200 K demonstrated that the Co moments have a noncollinear antiferromagnetic structure with the propagation vector k = (?, ?, 0). The ordered magnetic moment was determined to be 3.5 μ(B) at 10 K, and the directions of the nearest-neighbor Co moments are orthogonal each other in the c plane.  相似文献   

6.
The crystal structure of the layered cobalt oxyfluoride Sr(2)CoO(3)F synthesized under high-pressure and high-temperature conditions has been determined from neutron powder diffraction and synchrotron powder diffraction data collected at temperatures ranging from 320 to 3 K. This material adopts the tetragonal space group I4/mmm over the measured temperature range and the crystal structure is analogous to n = 1 Ruddlesden-Popper type layered perovskite. In contrast to related oxyhalide compounds, the present material exhibits the unique coordination environment around the Co metal center: coexistence of square pyramidal coordination around Co and anion disorder between O and F at the apical sites. Magnetic susceptibility and electrical resistivity measurements reveal that Sr(2)CoO(3)F is an antiferromagnetic insulator with the Néel temperature T(N) = 323(2) K. The magnetic structure that has been determined by neutron diffraction adopts a G-type antiferromagnetic order with the propagation vector k = (1/2 1/2 0) with an ordered cobalt moment μ = 3.18(5) μ(B) at 3 K, consistent with the high spin electron configuration for the Co(3+) ions. The antiferromagnetic and electrically insulating states remain robust even against 15%-O substation for F at the apical sites. However, applying pressure exhibits the onset of the metallic state, probably coming from change in the electronic state of square-pyramidal coordinated cobalt.  相似文献   

7.
The layered P2-K4Co7O14 oxide has been prepared and characterized by means of X-ray diffraction, electrical conductivity, thermopower, and magnetic measurements. The crystal structure of K4Co7O14 (P6(3)/m space group, Z=2, a=7.5171(1) A, and c=12.371(1) A) consists of a stacking of slabs of edge-shared CoO6 octahedra with K+ ions occupying ordered positions in the interslab space, leading to a a0 radical7xa0 radical7 supercell. Potential energy calculations at 0 K are in good agreement with the ordered distribution of potassium ions in the (ab) plane. This oxide is metallic, and the magnetic susceptibility is of Pauli-type, which contrasts with the Curie-Weiss behavior of the homologous NaxCoO2 (x approximately 0.6) oxide with close alkali content. The thermopower at room temperature is about one-third that of polycrystalline Na0.6CoO2.  相似文献   

8.
在强碱性水热条件下合成了两种新化合物Sr6Sb4Co3O14(OH)10(SSC)与Sr6Sb4Mn3O14(OH)10(SSM).采用粉末X射线衍射数据,通过Rietveld方法进行了结构分析,讨论了金属离子的拓扑结构.两种化合物均为石榴石-水榴石相关结构,空间群I43d,晶胞参数a分别为1.30634(2)nm(SSC)和1.31367(1)nm(SSM).结构中,SbO6八面体与MO4(M=Co,Mn)四面体共顶点连接,Sb5+-M2+(M=Co,Mn)离子表现为ctn即C3N4型的拓扑结构.拓扑结构中,Sb5+为三连接,过渡金属离子M2+(M=Co,Mn)为四连接.Sb5+离子的拓扑结构为体心立方,而M2+(M=Co,Mn)分布呈类风扇状,相互连接形成thp型拓扑结构(即Th3P4中Th原子之间连接关系).过渡金属离子的分布与化合物表现出的磁性质密切相关,Co2+(Mn2+)间存在反铁磁相互作用.Sr6Sb4Co3O14(OH)10在低温下表现出反铁磁倾斜有序.Sr6Sb4Co3O14(OH)10和Sr6Sb4Mn3O14(OH)10在高温下发生分解,产物主相为双钙钛矿Sr2(Sb,M)2O6(M=Co,Mn).  相似文献   

9.
Aoki C  Ishida T  Nogami T 《Inorganic chemistry》2003,42(23):7616-7625
A new chelating radical ligand 4ImNNH (2-(4-imidazolyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide) was prepared, and complexation with divalent transition metal salts gave complexes, [M(4ImNNH)(2)X(2)], which showed intermolecular ferromagnetic interaction in high probability (7 out of 10 paramagnetic compounds investigated here). The nitrate complexes (X = NO(3); M = Mn (1), Co (2), Ni (3), Cu (4)) crystallize isomorphously in monoclinic space group P2(1)/a. The equatorial positions are occupied with two 4ImNNH chelates and the nitrate oxygen atoms are located at the axial positions. Magnetic measurements revealed that the intramolecular exchange couplings in 1, 2, and 4 were antiferromagnetic, while that in 3 was ferromagnetic with 2J/k(B) = +85 K, where the spin Hamiltonian is defined as H = -2J(S(1).S(2) + S(2).S(3)) based on the molecular structures determined as the linear radical-metal-radical triads. The intramolecular ferromagnetic interaction in 3 is interpreted in terms of orthogonality between the radical pi and metal dsigma orbitals. Compounds 1-3 exhibited intermolecular ferromagnetic interaction ascribable to a two-dimensional hydrogen bond network parallel to the crystallographic ab plane. Complex 3 became an antiferromagnet below 3.4 K and exhibited a metamagnetic transition on applying a magnetic field of 5.5 kOe at 1.8 K. The complexes prepared from metal halides, [M(4ImNNH)(2)X(2)] (X = Cl, Br; M = Mn, Co, Ni, Cu), showed intramolecular antiferromagnetic interactions, which are successfully analyzed based on the radical-metal-radical system. The crystal structures determined here on 1-4, [Mn(4ImNNH)(2)Cl(2)], and [Cu(4ImNNH)(2)Br(2)] always have intermolecular hydrogen bonds of H(imidazole).X(axial ligand)-M, where X = NO(3), Cl, Br. This interaction seems to play an important role in molecular packing and presumably also in magnetic coupling.  相似文献   

10.
Ten compounds belonging to the series of oxygen-deficient perovskite oxides Ca(2)Fe(2-x)Mn(x)O(5) and CaSrFe(2-x)Mn(x)O(5+y), where x = 1/2, 2/3, and 1 and y ≈ 0-0.5, were synthesized and investigated with respect to the ordering of oxygen vacancies on both local and long-range length scales and the effect on crystal structure and magnetic properties. For the set with y ≈ 0 the oxygen vacancies always order in the long-range sense to form the brownmillerite structure containing alternating layers of octahedrally and tetrahedrally coordinated cations. However, there is a change in symmetry from Pnma to Icmm upon substitution of Sr for one Ca for all x, indicating local T(d) chain (vacancy) disorder. In the special case of CaSrFeMnO(5) the neutron diffraction peaks broaden, indicating only short-range structural order on a length scale of ~160 ?. This reveals a systematic progression from Ca(2)FeMnO(5) (Pnma, well-ordered tetrahedral chains) to CaSrFeMnO(5) (Icmm, disordered tetrahedral chains, overall short-range order) to Sr(2)FeMnO(5) (Pm3m, destruction of tetrahedral chains in a long-range sense). Systematic changes occur in the magnetic properties as well. While long-range antiferromagnetic order is preserved, the magnetic transition temperature, T(c), decreases for the same x when Sr substitutes for one Ca. A review of the changes in T(c) for the series Ca(2)Fe(2-x)M(x)O(5), taking into account the tetrahedral/octahedral site preferences for the various M(3+) ions, leads to a partial understanding of the origin of magnetic order in these materials in terms of a layered antiferromagnetic model. While in all cases the preferred magnetic moment direction is (010) at low temperatures, there is a cross over for x = 0.5 to (100) with increasing temperature for both the Ca(2)Fe(2-x)Mn(x)O(5) and the CaSrFe(2-x)Mn(x)O(5) series. For the y > 0 phases, while a brownmillerite ordering of oxygen vacancies is preserved for the Ca(2) phases, a disordered Pm3m cubic perovskite structure is always found when Sr is substituted for one Ca. Long-range magnetic order is also lost, giving way to spin glass or cluster-glass-like behavior below ~50 K. For the x = 0.5 phase, neutron pair distribution function (NPDF) studies show a local structure related to brownmillerite ordering of oxygen vacancies. Neutron diffraction data at 3.8 K show a broad magnetic feature, incommensurate with any multiple of the chemical lattice, and with a correlation length (magnetic domain) of 6.7(4) ?.  相似文献   

11.
Manganese substituted sodium cobaltate, Na(2/3)Co(2/3)Mn(1/3)O(2), with a layered hexagonal structure (P2-type) was obtained by a co-precipitation method followed by a heat treatment at 950 °C. Powder X-ray diffraction analysis revealed that the phase is pure in the absence of long-range ordering of Co and Mn ions in the slab or Na(+) and vacancy in the interslab space. The oxidation states of the transition metal ions were studied by magnetic susceptibility measurements, electron paramagnetic resonance (ESR) and (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The charge compensation is achieved by the stabilization of low-spin Co(3+) and Mn(4+) ions. The capability of Na(2/3)Co(2/3)Mn(1/3)O(2) to intercalate and deintercalate Na(+) reversibly was tested in electrochemical sodium cells. It appears that the P2 structure is maintained during cycling, the cell parameter evolution versus the sodium amount is given. From the features of the cycling curve the formation of an ordered phase for the Na(0.5)Co(2/3)Mn(1/3)O(2) composition is expected.  相似文献   

12.
We describe the preparation of SeMO(3) (M = Ni, Mn) under high pressure conditions (3.5 GPa), starting from reactive H(2)SeO(3) and MO mixtures, contained in sealed gold capsules under the reaction conditions 850 degrees C for 1 h. The polycrystalline samples have been studied by neutron powder diffraction (NPD) data and magnetization measurements. SeMO(3) (M = Ni, Mn) are orthorhombically distorted perovskites (space group Pnma). Below T(N) approximately 104 K (M = Ni) and T(N) approximately 53.5 K (M = Mn) these oxides experience an antiferromagnetic ordering, as demonstrated by susceptibility and NPD measurements. The magnetic reflections observed in the neutron patterns can be indexed with a propagation vector k = 0. Both compounds present the same magnetic structure, which is given by the basis vector (0, 0, A(z)). It can be described as antiferromagnetic (010) layers of magnetic moments lying along the c direction, which are antiferromagnetically coupled along the b direction. For the Ni(2+) ions, the ordered magnetic moment at T = 2.3 K is 2.11(3) micro(B), whereas for Mn(2+) at T = 2.6 K, |m| = 4.64(2) micro(B), consistent with the electronic configurations te (Ni(2+)) and te (Mn(2+)).  相似文献   

13.
By utilizing the novel metalloligand l(Cu), [Cu(2,4-pydca)(2)](2)(-) (2,4-pydca(2)(-) = pyridine-2,4-dicarboxylate), which possesses two kinds of coordination groups, selective bond formation with the series of the first-period transition metal ions (Mn(ii), Fe(ii), Co(ii), Cu(ii), and Zn(ii)) has been accomplished. depending on the coordination mode of 4-carboxylate with Co(ii), Cu(ii), and Zn(ii) ions, L(Cu) forms a one-dimensional (1-d) assembly with a repeating motif of [-M-O(2)C-(py)N-Cu-N(py)-Co(2)-]: {[ZnL(Cu)(H(2)O)(3)(DMF)].DMF}(N)() (2), [ZnL(Cu)(H(2)O)(2)(MeOH)(2)](N)() (3), and {[ML(Cu)(H(2)O)(4)].2H(2)O}(N)() (M = Co (4), Cu (5), Zn (6)). the use of a terminal ligand of 2,2'-bipyridine (2,2'-bpy), in addition to the cu(ii) ion, gives a zigzag 1-d assembly with the similar repeating unit as 4-6: {[Cu(2,2'-bpy)L(Cu)].3H(2)O}(N)() (9). on the other hand, for Mn(ii) and Fe(ii) ions, L(Cu) shows a 2-carboxylate bridging mode to form an another 1-d assembly with a repeating motif of [-M-O-C-O-CU-O-C-O-]: [ML(Cu)(H(2)O)(4)](N)() (M = Mn (7), Fe (8)). this selectivity is related to the strength of lewis basicity and the electrostatic effect of L(Cu) and the irving-williams order on the present metal ions. according to their bridging modes, a variety of magnetic properties are obtained: 4, 5, and 9, which have the 4-carboxypyridinate bridge between magnetic centers, have weak antiferromagnetic interaction, whereas 7 and 8 with the carboxylate bridge between magnetic centers reveal 1-d ferromagnetic behavior (Cu(II)-M(II); M(II) = Mn(II), J/k(B) = 0.69 K for 7; M(II) = Fe(II), J/k(B) = 0.71 K for 8).  相似文献   

14.
Using dc magnetization, ac susceptibility, specific heat, and neutron diffraction, we have studied the magnetic properties of Mn[N(CN)2]2(pyz) (pyz = pyrazine) in detail. The material crystallizes in the monoclinic space group P2(1)/n with a = 7.3248(2), b = 16.7369(4), and c = 8.7905 (2) A, beta = 89.596 (2) degrees, V = 1077.65(7) A(3), and Z = 4, as determined by Rietveld refinement of neutron powder diffraction data at 1.35 K. The 5 K neutron powder diffraction data reflect very little variation in the crystal structure. Interpenetrating ReO3-like networks are formed from axially elongated Mn(2+) octahedra and edges made up of mu-bonded [N(CN)2](-) anions and neutral pyz ligands. A three-dimensional antiferromagnetic ordering occurs below T(N) = 2.53(2) K. The magnetic unit cell is double the nuclear one along the a- and c-axes, giving the (1/2, 0, 1/2) superstructure. The crystallographic and antiferromagnetic structures are commensurate and consist of collinear Mn(2+) moments, each with a magnitude of 4.15(6) mu(B) aligned parallel to the a-direction (Mn-pyz-Mn chains). Electronic structure calculations indicate that the exchange interaction is much stronger along the Mn-pyz-Mn chain axis than along the Mn-NCNCN-Mn axes by a factor of approximately 40, giving rise to a predominantly one-dimensional magnetic system. Thus, the variable-temperature magnetic susceptibility data are well described by a Heisenberg antiferromagnetic chain model, giving g = 2.01(1) and J/k(B) = -0.27(1) K. Owing to single-ion anisotropy of the Mn(2+) ion, field-induced phenomena ascribed to spin-flop and paramagnetic transitions are observed at 0.43 and 2.83 T, respectively.  相似文献   

15.
In this paper we report the crystal growth, structure determination, and magnetic properties of the 2H-perovskite related oxides, Sr(5)Co(4)O(12) and Sr(6)Co(5)O(15), as well as the charge disproportionation and associated phase transition of Sr(5)Co(4)O(12). Sr(5)Co(4)O(12) and Sr(6)Co(5)O(15) are the (m = 2, n = 3) and (m = 1, n = 1) members of the A(3m+3n)A'(n)B(3m+n)O(9m+6n) family, respectively. Sr(6)Co(5)O(15) crystallizes in the space group R32 with lattice parameters of a = 9.5020(10) ? and c = 12.379(8) ?. The structure solution shows that Sr(6)Co(5)O(15) is isostructural with Sr(6)Rh(5)O(15). Magnetic measurements do not indicate any long-range magnetic order, although the Weiss temperature of -248 K indicates the presence of dominant antiferromagnetic interactions. Sr(5)Co(4)O(12) crystallizes in the space group P-3c1 with lattice parameters of a = 9.4705(10) ? and c = 20.063(5) ? at room temperature. The single crystal structure solution revealed that the cobalt ions in the trigonal prismatic sites of Sr(5)Co(4)O(12) undergo a structural transition at ~170 K, where the cobalt atoms are in the center of the trigonal prisms below this temperature and move partially toward the faces above this temperature. This structure transition is accompanied by a change in the magnetic moment of the oxide and can be related to a valence disproportionation of the cobalt ions and a concomitant Jahn-Teller distortion. In addition, specific heat, Seebeck coefficient, electric conductivity, and magnetic measurements as well as bond valence sum calculations were carried out for Sr(5)Co(4)O(12). Sr(5)Co(4)O(12) exhibits strong magnetic anisotropy but no long-range magnetic order.  相似文献   

16.
Sr2CoUO6 double perovskite has been prepared as a polycrystalline powder by solid-state reaction, in air. This material has been studied by X-ray, neutron powder diffraction (NPD) and magnetic measurements. At room temperature, the crystal structure is monoclinic, space group P2(1)/n, Z= 2, with a= 5.7916(2), b= 5.8034(2), c= 8.1790(3) A, beta= 90.1455(6)degrees. The perovskite lattice consists of a completely ordered array of CoO6 and UO6 octahedra, which exhibit an average tilting angle phi= 11.4 degrees. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN = 10 K. The low-temperature magnetic structure was determined by NPD, selected among the possible magnetic solutions compatible with the P2(1)/n space group, according with the group theory representation. The propagation vector is k= 0. A canted antiferromagnetic structure is observed below TN = 10 K, which remains stable down to 3 K, with an ordered magnetic moment of 2.44(7)mu(B) for Co2+ cations. The magnetic moment calculated from the Curie-Weiss law at high temperatures (5.22 mu(B)/f.u.) indicates that the orbital contribution is unquenched at high temperatures, which is consistent with high-spin Co2+((4)T(1g) ground state) in a quasi-regular octahedral environment. Magnetic and structural features are consistent with an electronic configuration Co2+[3d(7)]-U6+[Rn].  相似文献   

17.
Designed ferromagnetic, ferroelectric Bi(2)NiMnO(6)   总被引:1,自引:0,他引:1  
A newly designed ferromagnetic, ferroelectric compound, Bi(2)NiMnO(6), was prepared by high-pressure synthesis at 6 GPa. The crystal structure, as determined by synchrotron X-ray powder diffraction, is a heavily distorted double perovskite with Ni(2+) and Mn(4+) ions ordered in a rock-salt configuration. The presence of 6s(2) lone pairs of Bi(3+) ions and the covalent Bi-O bonds give ferroelectric properties with T(CE) of 485 K, while -Ni(2+)-O-Mn(4+)-O-Ni(2+)- magnetic paths lead to a ferromagnetism with T(CM) of 140 K. This simple material design to distribute two magnetic elements with and without e(g) electrons on B sites of Bi- and Pb-based perovkites can be applied to other Bi(2)M(2+)M'(4+)O(6) and Pb(2)M(3+)M'(5+)O(6) systems to search for newer ferromagnetic ferroelectrics.  相似文献   

18.
19.
The ordered double-perovskites Sr(2)MOsO(6) (M = Cu, Ni) consisting of 3d and 5d transition-metal magnetic ions (M(2+) and Os(6+), respectively) are magnetic insulators; the magnetic susceptibilities of Sr(2)CuOsO(6) and Sr(2)NiOsO(6) obey the Curie-Weiss law with dominant antiferromagnetic and ferromagnetic interactions, respectively, and the zero-field-cooled and field-cooled susceptibility curves of both compounds diverge below ~20 K. In contrast, the available density functional studies predicted both Sr(2)CuOsO(6) and Sr(2)NiOsO(6) to be metals. We resolved this discrepancy on the basis of systematic density functional calculations. The magnetic insulating states of Sr(2)MOsO(6) are found only when a substantially large on-site repulsion is employed for the Os atom, although it is a 5d element. The cause for the divergence between the zero-field-cooled and field-cooled susceptibility curves in both compounds and the reason for the difference in their dominant magnetic interactions were investigated by examining their spin exchange interactions.  相似文献   

20.
A novel ScVO(3) perovskite phase has been synthesized at 8 GPa and 1073 K from the cation-disordered bixbyite-type ScVO(3). The new perovskite has orthorhombic symmetry at room temperature, space group Pnma, and lattice parameters a = 5.4006(2) ?, b = 7.5011(2) ?, and c = 5.0706(1) ? with Sc(3+) and V(3+) ions fully ordered on the A and B sites of the perovskite cell. The vanadium oxygen octahedra [V-O(6)] display cooperative Jahn-Teller (JT) type distortions, with predominance of the tetragonal Q(3) over the orthorhombic Q(2) JT modes. The orthorhombic perovskite shows Arrhenius-type electrical conductivity and undergoes a transition to triclinic symmetry space group P-1 close to 90 K. Below 60 K, the magnetic moments of the 4 nonequivalent vanadium ions undergo magnetic long-range ordering, resulting in a magnetic superstructure of the perovskite cell with propagation vector (0.5, 0, 0.5). The magnetic moments are confined to the xz plane and establish a close to zigzag antiferromagnetic mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号