首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王力  田方宝 《气体物理》2020,5(4):21-30
自然界中的昆虫和鸟类大都采用拍翼飞行的策略,其优越的气动表现使拍动飞行方式备受关注.值得注意的是,拍动飞行昆虫和鸟类在实现高机动性的同时,产生的噪音并不十分显著.因此,对拍翼飞行的流固声耦合问题进行研究,揭示其飞行动力学和声学特性,对于应用这类飞行技术具有重要的指导意义.文章采用一种浸入边界法对拍翼悬停时的流固声耦合问题进行数值模拟研究.具体针对刚性拍翼和不同刚度、质量比的柔性拍翼进行了数值模拟,分析了拍翼刚度和质量比对拍翼悬停时的升力和声学特性的影响.结果表明拍翼的转动能有效增加升力,提高效率并降低拍翼运动产生的声音;同时悬停拍翼的近场声受涡的影响明显,尤其是在较大的转动角度时;引入适当的弹性可有效提高拍翼在悬停时的气动表现,包括提高升力系数和效率;综合考虑气动和声学表现,可以看出当无量纲拍动频率在0.3~0.4时,低质量的拍翼(拍翼-流体质量比为1.0)产生的声音较小,同时又具备较高的效率.   相似文献   

2.
This study provides accurate measurements of the wing and body kinematics of three different species of damselflies in free yaw turn flights. The yaw turn is characterized by a short acceleration phase which is immediately followed by an elongated deceleration phase. Most of the heading change takes place during the latter stage of the flight. Our observations showed that yaw turns are executed via drastic rather than subtle changes in the kinematics of all four wings. The motion of the inner and outer wings were found to be strongly linked through their orientation as well as their velocities with the inner wings moving faster than the outer wings. By controlling the pitch angle and wing velocity, a damselfly adjusts the angle of attack. The wing angle of attack exerted the strongest influence on the yaw torque, followed by the flapping and deviation velocities of the wings. Moreover, no evidence of active generation of counter torque was found in the flight data implying that deceleration and stopping of the maneuver is dominated by passive damping. The systematic analysis carried out on the free flight data advances our understanding of the mechanisms by which these insects achieve their observed maneuverability. In addition, the inspiration drawn from this study can be employed in the design of low frequency flapping wing micro air vehicles (MAV’s).  相似文献   

3.
The two-winged insect hovering flight is investigated numerically using the lattice Boltzmann method (LBM). A virtual model of two elliptic foils with flapping motion is used to study the aerodynamic performance of the insect hovering flight with and without the effect of ground surface. Systematic studies have been carried out by changing some parameters of the wing kinematics, including the stroke amplitude, attack angle, and the Reynolds number for the insect hovering flight without ground effect, as well as the distance between the flapping foils and the ground surface when the ground effect is considered. The influence of the wing kinematic parameters and the effect of the ground surface on the unsteady forces and vortical structures are analyzed. The unsteady forces acting on the flapping foils are verified to be closely associated with the time evolution of the vortex structures, foil translational and rotational accelerations, and interaction between the flapping foils and the existed vortical flow. Typical unsteady mechanisms of lift production are identified by examining the vortical structures around the flapping foils. The results obtained in this study provide some physical insight into the understanding of the aerodynamics and flow structures for the insect hovering flight.  相似文献   

4.
An unsteady flow visualization and force measurement were carried out in order to investigate the effects of the reduced frequency of a dragonfly-type model. The flow visualization of the wing wake region was conducted by using a smoke-wire technique. An electronic device was mounted below the test section in order to find the exact position angle of the wing for the visualization. A load-cell was employed in measuring aerodynamic forces generated by a plunging motion of the experimental model. To find the period of the flapping motion in real time, trigger signals were also collected by passing laser beam signals through the gear hole. Experimental conditions were as follows: the incidence angles of the foreand hind-wing were 0° and 10°, respectively, and the reduced frequencies were 0.150 and 0.225. The freestream velocities of the flow visualization and force measurement were 1.0 and 1.6m/sec, respectively, which correspond to Reynolds numbers of 3.4 × 103 and 2.9 × 103. The variations of the flow patterns and phase-averaged lift and the thrust coefficients during one cycle of the wing motion were presented. Results showed that the reduced frequency was closely related to the flow pattern that determined flight efficiency, and the maximum lift coefficient and lift coefficient per unit of time increased with reduced frequency.  相似文献   

5.
The unsteady flow and acoustic characteristics of the flapping wing are numerically investigated for a two-dimensional model of Bombus terrestris bumblebee at hovering and forward flight conditions. The Reynolds number Re, based on the maximum translational velocity of the wing and the chord length, is 8800 and the Mach number M is 0.0485. The computational results show that the flapping wing sound is generated by two different sound generation mechanisms. A primary dipole tone is generated at wing beat frequency by the transverse motion of the wing, while other higher frequency dipole tones are produced via vortex edge scattering during a tangential motion. It is also found that the primary tone is directional because of the torsional angle in wing motion. These features are only distinct for hovering, while in forward flight condition, the wing-vortex interaction becomes more prominent due to the free stream effect. Thereby, the sound pressure level spectrum is more broadband at higher frequencies and the frequency compositions become similar in all directions.  相似文献   

6.
We present a fluid–structure interactions (FSI) model of insect flapping flight with flexible wings. This FSI-based model is established by loosely coupling a finite element method (FEM)-based computational structural dynamic (CSD) model and a computational fluid dynamic (CFD)-based insect dynamic flight simulator. The CSD model is developed specifically for insect flapping flight, which is capable to model thin shell structures of insect flexible wings by taking into account the distribution and anisotropy in both wing morphology involving veins, membranes, fibers and density, and in wing material properties of Young’s modulus and Poisson’s ratios. The insect dynamic flight simulator that is based on a multi-block, overset grid, fortified Navier–Stokes solver is capable to integrate modeling of realistic wing-body morphology, realistic flapping-wing and body kinematics, and unsteady aerodynamics in flapping-wing flights. Validation of the FSI-based aerodynamics and structural dynamics in flexible wings is achieved through a set of benchmark tests and comparisons with measurements, which contain a heaving spanwise flexible wing, a heaving chordwise-flexible wing with a rigid teardrop element, and a realistic hawkmoth wing rotating in air. A FSI analysis of hawkmoth hovering with flapping flexible wings is then carried out and discussed with a specific focus on the in-flight deformation of the hawkmoth wings and hovering aerodynamic performances with the flexible and rigid wings. Our results demonstrate the feasibility of the present FSI model in accurately modeling and quantitatively evaluating flexible-wing aerodynamics of insect flapping flight in terms of the aerodynamic forces, the power consumption and the efficiency.  相似文献   

7.
通过色流实验和粒子成像测速技术(particle image velocimetry, PIV)对扑翼近场尾流脱落涡的结构轨迹和能量进行了定性及定量研究.结果表明:因展向流动充分性的不同, 存在两种牛角型涡系结构; 上下扑时翅翼交替产生顺时针和逆时针脱落涡, 两涡运动轨迹呈近似弧形对称, 对称轴的仰角略大于攻角; 脱落涡的涡心涡量在上下扑极点达到最大值, 环量最大值出现在到达极点前的1/5~2/5周期之间; 产生脱落涡的半周期内, 涡的平均环量都随减缩频率的增大而增大, 减缩频率较低时, 下扑平均环量大于上扑平均环量, 减缩频率较高时则相反; 振幅对涡能量影响明显, 减缩频率为2~2.5时, 振幅±40°时的涡平均环量约是振幅±30°时的两倍, 减缩频率越大振幅影响越明显.   相似文献   

8.
An integrated and rigorous model for the simulation of insect flapping flight is addressed. The method is very versatile, easily integrating the modeling of realistic wing–body morphology, realistic flapping-wing and body kinematics, and unsteady aerodynamics in insect flight. A morphological model is built based on an effective differential geometric method for reconstructing geometry of and a specific grid generator for the wings and body; and a kinematic model is constructed capable to mimic the realistic wing–body kinematics of flapping flight. A fortified FVM-based NS solver for dynamically moving multi-blocked, overset-grid systems is developed and verified to be self-consistent by a variety of benchmark tests; and evaluation of flapping energetics is established on inertial and aerodynamic forces, torques and powers. Validation of this integrated insect dynamic flight simulator is achieved by comparisons of aerodynamic force-production with measurements in terms of the time-varying and mean lift and drag forces. Results for three typical insect hovering flights (hawkmoth, honeybee and fruitfly) over a wide rang of Reynolds numbers from O(102) to O(104) demonstrate its feasibility in accurately modeling and quantitatively evaluating the unsteady aerodynamic mechanisms in insect flapping flight.  相似文献   

9.
Many insects produce sounds during flight. These acoustic emissions result from the oscillation of the wings in air. To date, most studies have measured the frequency characteristics of flight sounds, leaving other acoustic characteristics--and their possible biological functions--unexplored. Here, using close-range acoustic recording, we describe both the directional radiation pattern and the detailed frequency composition of the sound produced by a tethered flying (Lucilia sericata). The flapping wings produce a sound wave consisting of a series of harmonics, the first harmonic occurring around 190 Hz. In the horizontal plane of the fly, the first harmonic shows a dipolelike amplitude distribution whereas the second harmonic shows a monopolelike radiation pattern. The first frequency component is dominant in front of the fly while the second harmonic is dominant at the sides. Sound with a broad frequency content, typical of that produced by wind, is also recorded at the back of the fly. This sound qualifies as pseudo-sound and results from the vortices generated during wing kinematics. Frequency and amplitude features may be used by flies in different behavioral contexts such as sexual communication, competitive communication, or navigation within the environment.  相似文献   

10.
A novel virtual four-ocular stereo measurement system based on single high speed camera is proposed for measuring double beating wings of a high speed flapping insect. The principle of virtual monocular system consisting of a few planar mirrors and a single high speed camera is introduced. The stereo vision measurement principle based on optic triangulation is explained. The wing kinematics parameters are measured. Results show that this virtual stereo system not only decreases system cost extremely but also is effective to insect motion measurement.  相似文献   

11.
文章针对双三角翼大振幅正弦俯仰运动过程中的非定常载荷和流动特性开展了实验与数值模拟研究,并与相同主翼后掠角的单三角翼进行了对比.实验研究在低速回流式水槽中开展,所采用的实验模型为边条后掠角为75°,主翼后掠角为50°的双三角翼全模,俯仰运动的旋转轴位于主翼弦长的2/3处,振幅为0~60°,运动的缩减频率k=0.03,0.06,0.12,0.24,0.48.实验Reynolds数以主翼弦长为参考Re=1.69×104.在水槽的测力实验中,发现非定常流动力的迟滞现象,并且随着非定常运动缩减频率的增大,流动的迟滞效应也随之增大.与相同主翼后掠角的单三角翼相比,双三角翼的迟滞环在低缩减频率下更小,但随着缩减频率的增大,这种差距逐渐减小.在数值模拟研究中,采用DDES湍流模型对俯仰双三角翼的流场进行了数值模拟.流场结果表明,在较低的缩减频率下,主翼吸力面的前缘涡是影响气动力的主要因素,非定常流动力的迟滞效应主要与前缘涡在上仰过程中的延迟破裂和下俯过程中的延迟恢复有关;在较高的缩减频率下,机翼前缘涡对气动力的影响减小,由机翼俯仰角速度而产生的环量力成为了气动力的主导因素,因此在较高缩减频率下,单三角翼与双三角翼的升力特性趋于一致.   相似文献   

12.
In this paper, a study of a three-dimensional(3D) self-propelled bionic flying bird in a viscous flow is carried out. This bionic bird is propelled and lifted through flapping and rotating wings, and better flying can be achieved by adjusting the flapping and rotation motion of wings. In this study, we found that the bird can fly faster forward and upward with appropriate center of rotation and oscillation without more energy consumption and have perfect flight performance at a certain angle of attack by adjusting the center of oscillation. The study utilizes a 3D computational fluid dynamics package which constitutes combined immersed boundary method and the volume of fluid method. In addition, it includes adaptive multigrid finite volume method and control strategy of swimming and flying.  相似文献   

13.
A submerged turbulent plane jet in shallow water impinging vertically onto the free surface will produce a large-scale flapping motion when the jet exit velocity is larger than a critical one. The flapping phenomenon is verified in this paper through a large eddy simulation where the free surface is modeled by volume of fluid approach. The quantitative results for flapping jet are found to be in good agreement with available experimental data in terms of mean velocity, flapping-induced velocity and turbulence intensity. Results show that the flapping motion is a new flow pattern with characteristic flapping frequency for submerged turbulent plane jets, the mean centerline velocity decay is considerably faster than that of the stable impinging jet without flapping motion, and the flapping-induced velocities are as important as the turbulent fluctuations.  相似文献   

14.
Nowadays, the importance of identifying the flight mechanisms of the dragonfly, as an inspiration for designing flapping wing vehicles, is well known. An experimental approach to understanding the complexities of insect wings as organs of flight could provide significant outcomes for design purposes. In this paper, a comprehensive investigation is carried out on the morphological and microstructural features of dragonfly wings. Scanning electron microscopy (SEM) and tensile testing are used to experimentally verify the functional roles of different parts of the wings. A number of SEM images of the elements of the wings, such as the nodus, leading edge, trailing edge, and vein sections, which play dominant roles in strengthening the whole structure, are presented. The results from the tensile tests indicate that the nodus might be the critical region of the wing that is subjected to high tensile stresses. Considering the patterns of the longitudinal corrugations of the wings obtained in this paper, it can be supposed that they increase the load-bearing capacity, giving the wings an ability to tolerate dynamic loading conditions. In addition, it is suggested that the longitudinal veins, along with the leading and trailing edges, are structural mechanisms that further improve fatigue resistance by providing higher fracture toughness, preventing crack propagation, and allowing the wings to sustain a significant amount of damage without loss of strength.  相似文献   

15.
In this paper, the nonlinear dynamical behaviors of deploying-and-retreating wings in supersonic airflow are investigated. A cantilever laminated composite beam, which is axially moving at a known rate, is implemented to model the deploying-and-retreating wing. Associated with Reddy's third-order theory and von Karman type equations of large deformation, the nonlinear governing equations of motion of the deploying-and-retreating wing are derived based on the Hamilton's principle. The nonlinear partial differential equations of motion are transformed into a set of the ordinary differential equations using Galerkin's method. The nonlinear dynamical behaviors of the deployable-and-retreating wing are investigated in the cases of three different axially moving rates during deploying process and retreating process using the numerical simulations.  相似文献   

16.
This paper studies the effect of perturbation to the breakdown of the leading-edge vortices over delta wings. The passive perturbation in the normal direction is achieved by installing the hemisphere-like bulges on the delta wing along the projection of the vortices. The key purpose of this perturbation is to delay or suppress vortex breakdown over delta wings according to the self-induction mechanism theory. The design of bulge-like surface for delta wings offers a minimization of initial vorticity gradient and an elimination of linearly mutual induction within the vortex core. Three delta wings with swept angles of 60°, 65dg and 70° have been used. Dye flow visualization and force measurement in different water tunnels are performed at the water speed of U=0.10, 0.15, 0.20 and 0.25 m/s. In flow visualization, the results show contributions of bulges as perturbation to leading-edge vortices. The best outcome of perturbing the vortex core occurs in the case of the 65° delta wing. The breakdown positions on the 65° delta wing are delayed in almost the entire range of angles of attack, and that, the results are presented here.  相似文献   

17.
二维地效翼及地效流动特性数值研究   总被引:4,自引:0,他引:4  
杨韡  杨志刚 《计算物理》2009,26(2):231-240
用数值模拟的方法,对二维NACA0012翼型在地面效应下的空气动力特性和地效流动特性进行研究,得到地效翼的升力、阻力和翼型表面压力分布随攻角及相对飞行高度的变化情况.通过对计算结果的分析,可以看出,在一定的攻角,靠近地面飞行,机翼的升力得到提高;随着飞行高度的降低,地面效应增强,机翼的失速攻角减小;地面附近的粘性流动对机翼的空气动力特性影响很小;当相对飞行高度小于0.1时,应该考虑空气的可压缩性.  相似文献   

18.
The key to high manoeuvre ability in bird flight lies in the combined morphing of wings and tail.The perching of a wild Haliaeetus Albicilla without running or wing flapping is recorded and investigated using a high-speed digital video.A shape reconstruction method is proposed to describe wing contours and tail contours during perching.The avian airfoil geometries of the Aquila Chrysaetos are extracted from noncontact surface measurements using a ROMBER 3 D laser scanner.The wing planform,chord distribution and twist distribution are fitted in convenient analytical expressions to obtain a 3 D wing geometry.A three-jointed arm model is proposed to associate with the 3 D wing geometry,while a one-joint arm model is proposed to describe the kinematics of tail.Therefore,a 3 D bird model is established.The perching sequences of the wild eagle are recaptured and regenerated with the proposed 3 D bird model.A quasi-steady aerodynamic model is applied in the aerodynamic predictions,a four-step Adams-Bashforth method is used to calculate the ordinary differential equations,thus a BFGS based optimization method is established to predict the perching motions.  相似文献   

19.
盒式翼布局相对常规布局可以很大程度地减小诱导阻力,同时平滑的升力分布有利于减小跨声速激波阻力,但双翼间的气动干扰是跨声速盒式翼布局存在的主要问题.为掌握跨声速双翼气动干扰特性,选用超临界翼型RAE2822作为双翼翼型,对M=0.75,正负交错两种情况下双翼几何参数对布局升阻特性的影响进行数值研究.结果表明,增大双翼的纵向距离可以减弱双翼间气动干扰,使升阻比提高至无干扰升阻比.其中,前翼在下、后翼在上的负交错布局在双翼纵向距离为1.5倍上翼弦长时即可接近无干扰升阻比,更有利于提升布局的升阻特性.负交错时双翼的垂直间距对布局升阻比影响不大,无翼差角且减小前翼弦长有利于提高升阻比.   相似文献   

20.
基于Coanda效应的无缝襟翼吹气控制能大幅度提升机翼升力, 改善大型运输类飞机起降性能, 因此研究起降阶段地面效应对吹气控制的影响十分必要。通过数值模拟方法, 从流场变化的角度分析了无缝襟翼吹气控制机理, 以及有/无襟翼吹气时地面效应对翼型气动性能的影响。襟翼吹气使Coanda表面产生局部低压区, 形成指向Coanda表面的压力梯度, 进而引起射流上方的主流偏转和加速, 使整个翼面近壁区产生顺时针方向的速度增量; 翼面压力面的压力增大, 吸力面的吸力增强, 其中主翼上翼面吸力增强是翼型升力增加的主要来源。无吹气时, 地面效应使翼型上/下翼面附近的流速均降低, 上/下翼面的压力均有所提高, 整体上使翼型升力降低。有地面效应时的襟翼吹气增强了下翼面对来流的阻滞作用, 进一步提高了下翼面的压力; 襟翼吹气使上翼面气流加速, 可抵消地面效应引起的上翼面气流减速, 一定程度上减小了地面效应引起的上翼面吸力损失。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号