首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nylon11 film immersed in BiI3–ethanol solution was used for in situ generation of transparent BiOI/nylon11 X-ray photochromic composite materials via integration of the hydrolyzate (BiOI) of BiI3 into nylon11. The obtained BiOI/nylon11 composite film shows a reversible photochromic effect, changing the color from orange-red to brownish black under soft X-ray irradiation and back to orange-red after air exposure. X-ray photoelectron spectroscopy (XPS) results show that the oxidation state of Bi atoms in BiOI/nylon11 composite film does not change before and after changing the color. Angle-resolved XPS analysis reveals that BiOI in nylon11 film is well distributed within an infiltration depth of about 10 nm. The source of the X-ray photochromic effect for transparent BiOI/nylon11 composite film may be related to oxygen as well as the interaction between BiOI and the amide groups. The oxygen AT% in the composite film decreases with increasing X-ray irradiation time. The present method for preparing transparent BiOI/nylon11 X-ray photochromic composite materials is facile and low cost. The X-ray photochromic effect has potential applications in some technology fields. For example, it can be used to create temporary patterning in a colored composite material surface.  相似文献   

2.
L. Shi 《Applied Surface Science》2007,253(7):3731-3735
As a potential gate dielectric material, the La2O3 doped SiO2 (LSO, the mole ratio is about 1:5) films were fabricated on n-Si (0 0 1) substrates by using pulsed laser deposition technique. By virtue of several measurements, the microstructure and electrical properties of the LSO films were characterized. The LSO films keep the amorphous state up to a high annealing temperature of 800 °C. From HRTEM and XPS results, these La atoms of the LSO films do not react with silicon substrate to form any La-compound at interfacial layer. However, these O atoms of the LSO films diffuse from the film toward the silicon substrate so as to form a SiO2 interfacial layer. The thickness of SiO2 layer is only about two atomic layers. A possible explanation for interfacial reaction has been proposed. The scanning electron microscope image shows the surface of the amorphous LSO film very flat. The LSO film shows a dielectric constant of 12.8 at 1 MHz. For the LSO film with thickness of 3 nm, a small equivalent oxide thickness of 1.2 nm is obtained. The leakage current density of the LSO film is 1.54 × 10−4 A/cm2 at a gate bias voltage of 1 V.  相似文献   

3.
The 15°K deposition of alkaline earth metal atoms and ozone molecules at high dilution in argon yielded intense bands near 800 cm−1 and in the region, 450–650 cm−1. The bands near 800 cm−1 showed the appropriate oxygen isotopic shifts for assignment to ν3 of the ozonide ion; the use of scrambled isotopic ozones indicated that the metal cation is symmetrically bound to the ozonide anion which contains three oxygen atoms with two equivalent oxygens. For the case of Ca and Ba atoms and ozone, infrared absorptions appeared between 450–650 cm−1 which showed appropriate oxygen isotopic shifts for vibrational assignment to several metal oxide species. In the calcium experiments, bands at 635.7 and 575.5 cm−1 which showed diatomic oxygen-18 isotopic shifts were tentatively identified as (CaO)2 species; a pair of bands at 593.0 and 592.2 cm−1 were tentatively assigned to CaO2. For the barium reactions, bands at 634.7, 571.3, and 460.0 showed appropriate oxygen-18 frequency shifts for assignment to BaO, BaO2, and (BaO)2, respectively. The BaO assignment was confirmed by the N2O-nitrogen matrix reaction which yielded a nitrogen matrix counterpart for BaO at 612.4 cm−1.  相似文献   

4.
Influence of substrate on electronic sputtering of fluoride (LiF, CaF2 and BaF2) thin films, 10 and 100 nm thin, under dense electronic excitation of 120 MeV Ag25+ ions irradiation is investigated. The sputtering yield of the films deposited on insulating (glass) and semiconducting (Si) substrates are determined by elastic recoil detection analysis technique. Results revealed that sputtering yield is higher, up to 7.4 × 106 atoms/ion for LiF film on glass substrate, than that is reported for bulk materials/crystals (∼104 atoms/ion), while a lower value of the yield (2.3 × 106 atoms/ion) is observed for film deposited on Si substrate. The increase in the yield for thin films as compared to bulk material is a combined effect of the insulator substrate used for deposition and reduced film dimension. The results are explained in the framework of thermal spike model along with substrate and size effects in thin films. It is also observed that the material with higher band gap showed higher sputtering yield.  相似文献   

5.
An optical method for directly measuring the thickness of a thin transparent film has been proposed by means of multi-wave laser interference at many incident angles, and confirmed experimentally by means of equipment made on an experimental basis. Two methods are available: one can be used when an index of refraction of the film, a wavelength λ, and two successive angles of incidence at which the sinusoidal light intensity has minimum values, are known (Method I), and another can be used without an index of film refraction when three successive angles of incidence and a wavelength are known (Method II). The smallest measurable thickness is 1.43λ for Method I, and 2.5λ for Method II. The largest measurable thickness is about 100λ for both methods. The measurement error by means of numerical calculation is Δh/h−1.01×10−2, and that obtained experimentally with an angular resolution of incident light of 0.3° is Δh/h7×10−2 for Method I. The refractive index can also be measured by means of Method II.  相似文献   

6.
Two kinds of reactively evaporated titanium nitride films with columnar (B 0 films) and fine-grained (B + films) film structures, respectively, have been examined as diffusion barriers for preventing aluminium diffusion. The aluminium diffusion profiles have been investigated by 2 MeV 4He+ Rutherford backscattering spectrometry (RBS) at temperatures up to 550° C. The diffusivity from 300° C to 550° C is: D[m2s–1]=3×10–18 exp[–30/(RT)] in B 0 layers and D[m2s–1]=1.4×10–16 exp[–48/(RT)] in B + TiN layers. The activation-energy values determined indicate a grain boundary diffusion mechanism. The difference between the diffusion values is determined implicitly by the microstructure of the layers. Thus, the porous B 0 layers contain a considerable amount of oxygen absorbed in the intercolumnar voids and distributed throughout the film thickness. As found by AES depth profiling, this oxygen supply allows the formation of Al2O3 during annealing the latter preventing the subsequent diffusion of the aluminium atoms.  相似文献   

7.
The formic acid and methanol oxidation reaction are studied on Pt(1 1 1) modified by a pseudomorphic Pd monolayer (denoted hereafter as the Pt(1 1 1)-Pd1 ML system) in 0.1 M HClO4 solution. The results are compared to the bare Pt(1 1 1) surface. The nature of adsorbed intermediates (COad) and the electrocatalytic properties (the onset of CO2 formation) were studied by FTIR spectroscopy. The results show that Pd has a unique catalytic activity for HCOOH oxidation, with Pd surface atoms being about four times more active than Pt surface atoms at 0.4 V. FTIR spectra reveal that on Pt atoms adsorbed CO is produced from dehydration of HCOOH, whereas no CO adsorbed on Pd can be detected although a high production rate of CO2 is observed at low potentials. This indicates that the reaction can proceed on Pd at low potentials without the typical “poison” formation. In contrast to its high activity for formic acid oxidation, the Pd film is completely inactive for methanol oxidation. The FTIR spectra show that neither adsorbed CO is formed on the Pd sites nor significant amounts of CO2 are produced during the electrooxidation of methanol.  相似文献   

8.
《Applied Surface Science》1997,115(2):166-173
Ion beam nitridation of Si(100) as a function of N+2 ion energy in the range of 2–10 keV has been investigated by in-situ Auger electron spectroscopy (AES) analysis and Ar+ depth profiling. The AES measurements show that the nitride films formed by 4–10 keV N+2 ion bombardment are relatively uniform and have a composition of near stoichiometric silicon nitride (Si3N4), but that formed by 2 keV N+2 ion bombardment is N-rich on the film surface. Formation of the surface N-rich film by 2 keV N+2 ion bombardment can be attributed to radiation-enhanced diffusion of interstitial N atoms and a lower self-sputtering yield. AES depth profile measurements indicate that the thicknesses of nitride films appear to increase with ion energy in the range from 2 to 10 keV and the rate of increase of film thickness is most rapid in the 4–10 keV range. The nitridation reaction process which differs from that of low-energy (< 1 keV) N+2 ion bombardment is explained in terms of ion implantation, physical sputtering, chemical reaction and radiation-enhanced diffusion of interstitial N atoms.  相似文献   

9.
N atoms were incorporated into sp2-rich a-C networks using DC facing-target reactive sputtering at various N2 fraction (PN2) and their structure and opto-electrical properties were investigated systematically. As PN2 increases, the fraction of CN bonded carbons (or the N content) increases primarily at the expense of the CC bonded carbons and then reaches its saturated value at PN2 > 40%. The incorporated N preferentially forms different kinds of non-aromatic CN phase, leading to more localization of π electrons and the loss of the connectivity of nanographite fragments in the films, which is different from the case in N-doped sp3-rich a-CNx films. Hence, with increasing PN2, the a-C(:N) film converts from a semiconductor with a narrower optical band gap to an insulator-like material with a wider gap. Additionally, the variation of optical constants (n and k) and spin defects are related to the enhancement of the non-aromatic CN phase.  相似文献   

10.
The time resolved polarized CARS technique has been used to detect Cl atoms produced by photolysis of ICl in the presence and absence of O2. A population inversion was observed between the ground state electronic levels Cl(2 P 1/2) and Cl(2 P 3/2). The rate constant for Cl(2 P 1/2) decay (quenching + reaction) in ICl was determined to be (3.2±0.2)×10–13 cm3/molecule×s; the rate constant for Cl(2 P 3/2) reaction with ICl was determined to be (7.8±0.5)×10–12 cm3/molecule×s; and the rate constant for Cl(2 P 1/2) quenching by O2 was determined to be (1.9±0.2)×10–13 cm3/molecule×s.  相似文献   

11.
The reversible formation of a 2D-CuI film on Cu(1 0 0) is studied by means of cyclic voltammetry in combination with electrochemical scanning tunneling microscopy.Exposing the Cu(1 0 0) electrode surface to an acidic and iodide containing electrolyte (5 mM H2SO4/1 mM KI) leads to the formation of a well ordered c(p × 2)-I adsorbate layer at potentials close to the onset of the anodic copper dissolution reaction. Copper dissolution starts at slightly more positive potentials preferentially at step edges in the presence of the iodide adlayer via the removal of copper material from kink sites at step edges. This increase of mobile Cu+ ions causes the local exceeding of the CuI solubility product (pKL = 11.3), thereby giving rise to the nucleation and growth of a laterally well ordered 2D-CuI film. Key structural motifs of the growing CuI film are closely related to the (1 1 1) plane of bulk CuI. Quite intriguing, the 2D-CuI film does not act as a passive layer. Copper dissolution proceeds even in the presence of this binary compound via an inverse step flow mechanism.  相似文献   

12.
A layered luminescent mesostructured thin film of silica-CTAB-Tb(acac)3 composite has been synthesized by a dip-coating process through an in situ sol-gel method. The terbium (Tb3+) ion and β-diketone organic ligand acetylacetone (acac) were introduced into the precursor solution, respectively. The as-synthesized composite film was transparent, colorless and possessed a layered structure. After the composite film was dried at 50 °C for a few minutes Tb(acac)3 complex was synthesized in the mesostructured thin film, which can be indicated by the luminescence of the composite film under the UV lamp. The properties of the samples were characterized by XRD, absorption, Fourier transform infrared spectroscopy, and luminescent spectra.  相似文献   

13.
Residual dipolar couplings (RDCs) between NC′ and NCα atoms in polypeptide backbones of proteins contain information on the orientation of bond vectors that is complementary to that contained in NH RDCs. The 1JNCα and 2JNCα scalar couplings between these atoms also display a Karplus relation with the backbone torsion angles and report on secondary structure. However, these N–C couplings tend to be small and they are frequently unresolvable in frequency domain spectra having the broad lines characteristic of large proteins. Here a TROSY-based J-modulated approach for the measurement of small 15N–13C couplings in large proteins is described. The cross-correlation interference effects inherent in TROSY methods improve resolution and signal to noise ratios for large proteins, and the use of J-modulation to encode couplings eliminates the need to remove frequency distortions from overlapping peaks during data analysis. The utility of the method is demonstrated by measurement of 1JNC′, 1JNCα, and 2JNCα scalar couplings and 1DNC′ and 1DNCα residual dipolar couplings for the myristoylated yeast ARF1·GTPγs protein bound to small lipid bicelles, a system with an effective molecule weight of 70 kDa.  相似文献   

14.
The undoped and fluorine doped thin films are synthesized by using cost-effective spray pyrolysis technique. The dependence of optical, structural and electrical properties of SnO2 films, on the concentration of fluorine is reported. Optical absorption, X-ray diffraction, scanning electron microscope (SEM) and Hall effect studies have been performed on SnO2:F (FTO) films coated on glass substrates. The film thickness varies from 800 to 1572 nm. X-ray diffraction pattern reveals the presence of cassiterite structure with (2 0 0) preferential orientation for FTO films. The crystallite size varies from 35 to 66 nm. SEM and AFM study reveals the surface of FTO to be made of nanocrystalline particles. The electrical study reveals that the films are degenerate and exhibit n-type electrical conductivity. The 20 wt% F doped film has a minimum resistivity of 3.8 × 10−4 Ω cm, carrier density of 24.9 × 1020 cm−3 and mobility of 6.59 cm2 V−1 s−1. The sprayed FTO film having minimum resistance of 3.42 Ω/cm2, highest figure of merit of 6.18 × 10−2 Ω−1 at 550 nm and 96% IR reflectivity suggest, these films are useful as conducting layers in electrochromic and photovoltaic devices and also as the passive counter electrode.  相似文献   

15.
Scanning tunnelling microscopy (STM) has been used to investigate the structure formed on an α-Fe2O3(0001) substrate after argon ion bombardment and annealing in 1 × 10−6 mbar of O2 at 1000 K. The STM images recorded at positive sample bias reveal an hexagonal array, with a distance between (Fe) atoms of 6.0 ± 0.1 rA and steps in multiples of 4.8 Å. These results are consistent with formation of an Fe3O4(111) epitaxial layer terminating in a monolayer of Fe atoms.  相似文献   

16.
A semiempirical method of analysis of quasi-molecular terms in conjunction with experimental potentials of interaction of Hg(6(3 P 1)) atoms with Ar, Kr, and Xe atoms are used to obtain the Hg(63 P 2)-Ar, Kr, Xe interaction potential, which are applied to calculating the radiative lifetimes of the v′1(3 P 2) states of the HgAr, HgKr, and HgXe molecules and the probabilities of the v′1(3 P 2)−v″0+(1 S 0) transitions.  相似文献   

17.
Nitrogen atoms have been detected in stoichiometric flat premixed H2/O2/N2 flames at 33 and 96 mbar doped with small amounts of NH3, HCN, and (CN)2 using two-photon laser excitation at 211 nm and fluorescence detection around 870 nm. The shape of the fluorescence intensity profiles versus height above the burner surface is markedly different for the different additives. Using measured quenching rate coefficients and calibrating with the aid of known N-atom concentrations in a discharge flow reactor, peak N-atom concentrations in these flames are estimated to be on the order of 1012–5×1013 cm–3; the detection limit is about 1×1011 cm–3.  相似文献   

18.
Photoinduced optical and second-order non-linear optical effects in the interfaces separating In2O3–SiON (O/N ratio equals 1) films doped with A1, Sn and glass substrates were investigated using the photoinduced optical second harmonic generation. The photoinduced effective second-order optical susceptibility deff (at λ=1.76 μm) shows a good correlation with the linear optical susceptibility, particularly with the shift of the absorption edge. The maximal response of the photoinduced optical response signal was observed for the pump–probe delaying time of 34 ps. The performed experimental measurements indicate that the observed effects are mainly caused by the interface potential gradients on the border glass–In2O3–SiON film and by additional polarization due to insertion of the Al and Sn atoms. The observed phenomenon may be proposed as a sensitive tool for investigation of thin semiconducting interfacial layers and simultaneously such films may be used as materials for non-linear optical devices.  相似文献   

19.
We report highly transparent Ag-doped In2O3 (IAO) films with high work function for use as transparent anodes in organic solar cells (OSCs). The electrical, optical, structural, and morphological properties of IAO films and their work function were investigated as a function of the rapid thermal annealing (RTA) temperature. At an RTA temperature of 600 °C, the IAO film showed a sheet resistance of 23.12 Ohm/square, an optical transmittance of 79.28%, and a work function of 5.21 eV, similar to conventional Sn-doped In2O3 (ITO) films. The low resistivity of the IAO film was closely related to oxygen vacancies caused by Ag suboxide formation in the In2O3 matrix. A bulk-heterojunction OSC with the optimized IAO anode showed performance comparable to that of an OSC with a reference ITO anode, indicating that the IAO films is a promising anode material for use in OSCs.  相似文献   

20.
The effect of poly-Si thickness on silicidation of Ni film was investigated by using X-ray diffraction, auger electron spectroscopy, cross-sectional scanning transmission electron microscopy, resistivity, IV, and CV measurements. The poly-Si films with various thickness of 30–200 nm were deposited by LPCVD on thermally grown 50 nm thick SiO2, followed by deposition of Ni film right after removing the native oxide. The Ni film was prepared by using atomic layer deposition with a N2-hydroxyhexafluoroisopropyl-N1 (Bis-Ni) precursor. Rapid thermal process was then applied for a formation of fully silicide (FUSI) gate at temperature of 500 °C in N2 ambient during 30 s. The resultant phase of Ni-silicide was strongly dependent on the thickness of poly-Si layer, continuously changing its phase from Ni-rich (Ni3Si2) to Si-rich (NiSi2) with increasing the thickness of the poly-Si layer, which is believed to be responsible for the observed flat band voltage shift, ΔVFB, in CV curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号