首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
提出了一种简单、无标记、可再生的电化学方法研究适配体和凝血酶之间的相互作用,采用亚甲基蓝(MB)做电化学指示剂,氧化锆(ZrO2)-金纳米粒子(AuNPs)涂层修饰玻碳电极(GCE)。利用金-硫键及杂交化学反应,捕获探针和适配体依次修饰到电极表面,亚甲基蓝插入到DNA上,形成适配体传感器。电极表面的DNA双链在凝血酶的存在下发生解旋,MB在DNA上的吸附量随之减少,峰电流也显著降低,达到检测凝血酶的目的。实验显示,凝血酶在20 pmol/L~150 nmol/L的浓度范围内,峰电流的减小量随凝血酶浓度的升高而增大,检出限为20.6 fmol/L。该方法简单、灵敏、选择性好,并成功用于实际样品检测。  相似文献   

2.
本文以羧基96孔板为分离载体,核酸适配体作为分子特异性识别元件,聚苯乙烯微球作为放大载体,辣根过氧化物酶为标记物,构建了化学发光(CL)高灵敏度凝血酶检测新技术.实验结果表明:该放大技术不但灵敏度高,且抗干扰能力强,其他蛋白质如IgG、IgM、IgA、IgE、IFN均无明显干扰.聚苯乙烯微球放大体系中凝血酶的线性范围为7.8~250pmol/L,最低检测浓度可达3.9pmol/L;而不放大检测技术的线性范围为0.94~30nmol/L,最低检测浓度为0.46nmol/L,放大体系将检测灵敏度提高100多倍.综合而言,基于适配体识别和聚苯乙烯微球放大的凝血酶CL检测新技术具有通量大、简单快速和灵敏度高的特点,有望在凝血酶高通量检测领域获得应用.  相似文献   

3.
将荧光染料分子标记的含29个碱基的可识别凝血酶的DNA适配体非特异吸附到纳米金表面,荧光发生猝灭,加入凝血酶后,凝血酶与适配体特异性结合,使适配体空间结构发生改变,荧光染料分子远离纳米金表面,荧光恢复,因此可以实现对凝血酶的检测。实验结果表明,这种检测方法简便、快速、特异性强,检出限为0.54 nmol/L(对应样品体积为200μL)。  相似文献   

4.
基于β-环糊精(β-CD)主客体竞争模式,构建了开关型凝血酶适配体电化学传感器.将末端修饰了二茂铁(Fc)的核酸适配体通过与β-CD的主客体识别固定在金电极表面,当凝血酶存在时,适配体由原来的直立线状构型变为"G-四链体",远离电极表面,适配体探针的氧化还原电流强度减小,即"Signal-off".利用此效应对凝血酶进行了灵敏检测,结果表明,在5.0×10-13~5.0×10-9 mol/L浓度范围内,凝血酶的浓度与电化学响应信号呈良好的线性关系,检出限为2.0×10-13 mol/L(3σ).与其它蛋白分子相比,本方法对凝血酶蛋白的检测具有高特异性.本传感器构建简单,再生性好,为生物血清样本中凝血酶的实时高效检测提供了方法.  相似文献   

5.
张月侠  宋茂勇  李涛  赛道建  汪海林 《色谱》2009,27(3):333-336
以一种高亲和力适配体作为亲和荧光探针,以自建的毛细管电泳-激光诱导荧光(CE-LIF)检测装置为基础,建立了一种高灵敏、快速测定人凝血酶的方法。荧光标记的凝血酶适配体特异性地与凝血酶结合并形成稳定的凝血酶-适配体复合物,采用CE-LIF对复合物进行分离检测,从而测定凝血酶浓度。探讨了盐离子种类及浓度对适配体与凝血酶结合的影响,并在选定的电泳条件下对凝血酶检测的线性范围、检出限和重现性进行了测定。结果表明,盐离子存在的条件下适配体与凝血酶的亲和力降低,不利于两者的结合;人血清溶液中,凝血酶浓度在0.25~10 nmol/L范围内与复合物峰面积具有良好的线性相关性(r20.991),检出限(S/N3)为55.6 pmol/L;精密度和回收率测定结果均能满足分析的要求。  相似文献   

6.
利用“适配体-目标分子-适配体”的“三明治”夹心方式构建液晶生物传感检测三磷酸腺苷(ATP). 将ATP核酸适配体片段作为捕获探针固定在经TEA/DMOAP混合组装膜修饰的玻片基底表面, 当ATP存在时, 裂开的两部分核酸适配体与ATP结合形成双链结构, 有效诱导液晶分子取向发生变化从而引起光学信号的亮度及颜色发生变化, 实现对ATP的检测, 该方法在ATP浓度为10 nmol/L时仍可观测到明显的光学信号变化. 这种“适配体-目标分子-适配体”的“三明治”夹心式液晶生物传感方法具有无需标记, 操作简单等特点, 在快速检测小分子等物质领域中有广泛的应用前景.  相似文献   

7.
介绍了一种利用互补核酸杂交富集金胶实现信号扩增的蛋白质生物传感器. 以凝血酶蛋白为研究对象, 利用凝血酶蛋白相对应的两段核酸适配体, 将适配体Ⅰ固定在磁性颗粒上, 用于特异性地捕获蛋白, 将适配体Ⅱ标记金胶作为检测信标. 由凝血酶蛋白和相对应的两段核酸适配体构建三明治结构的凝血酶蛋白生物传感器. 另外, 再通过信标金胶上过剩的核酸适配体链与另一段标记有金胶的互补核酸进一步杂交, 获得金胶的选择性聚集, 实现了信号扩增. 通过信号扩增, 使此传感器的灵敏度大大提高, 对凝血酶蛋白的检测下限可达到4.52×10-15 mol/L. 平行测定浓度为7.47×10-14 mol/L的凝血酶8次, 其RSD为3.0%. 该生物传感器对凝血酶蛋白有很好的特异性, 其它蛋白如溶菌酶和牛血清白蛋白的存在对于检测没有影响.  相似文献   

8.
本文以钌联吡啶络合物标记的凝血酶适配体为电化学发光探针,建立了均相电化学发光测定凝血酶的新方法。实验发现待测物凝血酶的存在,使金电极上电化学发光探针的电化学发光强度急剧降低,这是由于电化学发光探针与凝血酶形成了大质量生物复合物,使其扩散系数增大和电化学发光效率降低所致。实验结果表明,电化学发光强度的降低与凝血酶浓度在0.5~7.5nmol/L范围内呈良好的线性关系。该方法的检测限为0.25nmol/L,对凝血酶测定的相对标准偏差为2.7%(c=5.0nmol/L,n=7)。该方法具有简单灵敏、选择性好和无需探针固定化和冲洗步骤等优点。  相似文献   

9.
冯亚娟  杨云慧 《分析化学》2014,(8):1137-1142
采用电沉积方法将Pd纳米颗粒沉积到玻碳电极(GCE)表面,再将Pd纳米颗粒修饰电极插入H2SO4溶液中,吸收适量活性氢后,转移到HAuCl4溶液中,静置一定时间后,使金被活性氢还原并自发沉积到Pd纳米颗粒修饰的玻碳电极表面。通过自组装作用将带巯基的凝血酶适配体Ⅰ固定在Pd-Au/GCE表面,制得非标记型凝血酶适配体传感器。当凝血酶与凝血酶适配体结合时,覆盖在电极表面,从而阻碍了电极表面的Pd-Au纳米颗粒对H2O2的催化还原活性,通过监测H2O2还原电流的减小程度,实现对凝血酶的定量检测。考察了pH值、培育时间等实验条件对响应电流的影响以及Pd-Au纳米颗粒的协同作用。实验表明,此传感器的线性范围为3.0~300 nmol/L,检出限为0.98 nmol/L。  相似文献   

10.
介绍了一种结合核酸适配体技术和纳米技术,以凝血酶蛋白为研究对象的高效、高灵敏、特异性识别蛋白质的电化学生物传感器. 利用金纳米颗粒标记的核酸适配体以及被固定在磁性纳米颗粒上的核酸适配体与凝血酶蛋白同时结合形成磁性颗粒/凝血酶/纳米金胶的三明治结构, 利用磁性分离, 将金胶纳米颗粒特异性地吸着到电极表面, 通过检测电极上金胶的电化学信号, 实现对凝血酶靶蛋白的检测. 这种生物传感器对凝血酶蛋白具有很高的特异性识别能力, 其检测不受其他蛋白质如牛血清白蛋白等存在的干扰, 可应用于实际血浆中凝血酶的检测. 由于利用磁性纳米颗粒使得分离、富集和测定在同一个自制的电化学反应池中进行, 其操作不仅简单, 而且检测的灵敏度得到提高. 该蛋白质生物传感器的线性范围为5.6×10-12 ~ 1.12×10-9 mol/L, 检测限可以达到1.42×10-12 mol/L.  相似文献   

11.
Aptamers are single-stranded RNA or DNA, which bind to their target with high affinity and specificity. Method of isolating aptamers against cell surface protein is called cell-SELEX. Common approach for monitoring cell-SELEX developed aptamers is flow cytometry. Since flow cytometry is costly and requires sophisticated equipments, we suggested implementing easy access, high throughput enzyme-link apta-sorbent assay test (ELASA) to confirm the specificity of aptamers selected through cell-SELEX process. In this regard, we compared ELASA and flow cytometry techniques in order to screen potent candidate aptamers against A2780 Rcis cell line, which were selected by cell-SELEX. The obtained results demonstrated that both ELASA and flow cytometry are identical in terms of sensivity and precision for aptamers selection. Then it could be concluded that ELASA method could be used as a versatile, inexpensive procedure for in vito evaluation of isolated aptamers from cell-SELEX based process.  相似文献   

12.
FluMag-SELEX as an advantageous method for DNA aptamer selection   总被引:6,自引:0,他引:6  
Aptamers are ssDNA or RNA oligonucleotides with very high affinity for their target. They bind to the target with high selectivity and specificity because of their specific three-dimensional shape. They are developed by the so-called Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process. We have modified this method in two steps—use of fluorescent labels for DNA quantification and use of magnetic beads for target immobilization. Thus, radioactive labelling is avoided. Immobilization on magnetic beads enables easy handling, use of very small amounts of target for the aptamer selection, rapid and efficient separation of bound and unbound molecules, and stringent washing steps. We have called this modified SELEX technology FluMag-SELEX. With FluMag-SELEX we have provided a methodological background for our objective of being able to select DNA aptamers for targets with very different properties and size. These aptamers will be applied as new biosensor receptors. In this work selection of streptavidin-specific aptamers by FluMag-SELEX is described. The streptavidin-specific aptamers will be used to check the surface occupancy of streptavidin-coated magnetic beads with biotinylated molecules after immobilization procedures.  相似文献   

13.
Kim YS  Jurng J 《The Analyst》2011,136(18):3720-3724
We developed a homogeneous fluorescence assay for multiplex detection based on the target induced conformational change of DNA aptamers. DNA aptamers were immobilized on quantum dots (QDs), and QDs conjugated ssDNA was adsorbed on the surface of gold nanoparticles (AuNPs) by electrostatic interaction between uncoiled ssDNA and the AuNPs. Subsequently the fluorescence of QDs was effectively quenched by the AuNPs due to fluorescence resonance energy transfer (FRET) of QDs to AuNPs. In the presence of targets, the QDs conjugated aptamers were detached from AuNPs by target induced conformational change of aptamers, consequently the fluorescence of the QDs was recovered proportional to the target concentration. In this study, three different QD/aptamer conjugates were used for multiplex detection of mercury ions, adenosine and potassium ions. In a control experiment, all of the three targets were simultaneously detected with high selectivity.  相似文献   

14.
Oca&#;a  Cristina  Lukic  Sonja  del Valle  Manel 《Mikrochimica acta》2015,182(11):2045-2053

We report on a sensitive aptamer-antibody interaction-based assay for cytochrome c (Cyt c) using electrochemical impedance. 4-Amino benzoic acid is used for the oriented immobilization of aminated aptamers onto multi-walled carbon nanotubes on the surface of a screen-printed electrode via electrochemical grafting. Impedance was measured in a solution containing the redox system ferro/ferricyanide. The change in interfacial charge transfer resistance (Rct) experienced by the redox marker was recorded to confirm the formation of a complex between aptamer and the target (Cyt c). A biotinylated antibody against cytochrome c was then used in a sandwich type of assay. The addition of streptavidin conjugated to gold nanoparticles and signal enhancement by treatment with silver led to a further increase in Rct. Under optimized conditions, a detection limit as low as 12 pM was obtained. Cross-reactivity against other serum proteins including fibrinogen, BSA and immunoglobulin G demonstrated improved selectivity.

Sensitive and selective assay for cytochrome c protein using aptamer linked to multi-walled carbon nanotube screen printed electrode via diazonium electrochemical grafting and specific biotinylated antibody to improve selectivity. Detection can be based on electrochemical impedance spectroscopy, or using a streptavidin-gold nanoparticle conjugate.

  相似文献   

15.
Liver cancer, as the second cause of cancer death all around the world, resulted in a series of chronic liver diseases. More than 80%of the patients cannot receive effective treatment because of their advanced disease or poor liver function. It is time to improve early clinical diagnosis and find optimal therapeutic treatments. As the tumor cells behave differently from the cell-surface molecules, it is necessary to find a highly specific probe. The aptamers, known as "chemical antibodies", can bind to their target molecules with high affinity and high specificity. The apatmers were obtained by Cell-SELEX, which was aimed at finding the aptamers against whole living cells. In the article, after 19 selections, the ssDNA pool was cloned and sequenced. After that, six aptamers were obtained, named apt_A to apt_F. By incubating the aptamers with different cells, except apt_E, the other aptamers showed high specificity. As for apt_E, which showed high affinity to several cancer cells, was a potential probe for the common protein presented by several different cancer cells. The equilibrium dissociation constants(Kd) were evaluated by measuring the flow cytometry signal that characterized the binding ability of aptamers to the target cells at a series of concentrations ranging from 46.3(4.5) nM to 199.4(44.2) nM, which exposed the high binding affinities of these aptamers. The research in the confocal fluorescence images further confirmed the specificity of these aptamers and the fact that the aptamers were combined with the targets on the cell-surface.  相似文献   

16.
Selection of aptamers with high affinity and good specificity requires multiple rounds of alternating steps of separation and PCR amplification.Herein,we proposed a novel high-efficiency aptamers picking strategy:One-round pressure controllable selection(OPCS).OPCS integrates four types of screening superiority,high-efficiency separation,one-round selection and PCR amplification,synchronous negative selection and targets competition.The controllable screening pressure can be achieved through two approaches,balanced competition by the regulation of protein concentration,and dominant competition by introducing a predatory protein with high concentration.In OPCS process,two proteins were co-incubated with one ssDNA library,and each protein bound its favorable sequences specifically and formed protein-ss D NA complex re spectively.Meanwhile,one protein could supply/sufferthe picking pressure of affinity and specificity to/from another,which eliminated weakly bound or unbound sequences for each other.Two complexes could be separated and collected conveniently,and aptamers for two proteins obtained synchronously with high affinity and good specificity.This strategy not only provides a more effective way for aptamers selection,but shows great potential in other ligands or drugs selection.  相似文献   

17.
In this work, aptamers-modified silver nanoparticles (AgNPs) were prepared as capture substrate, and fluorescent dyes-modified aptamers were synthesized as detection probes. The sandwich assay was based on dual aptamers, which was aimed to accomplish the highly sensitive detection of single protein and multiplex detection of proteins on one-spot. We found that aptamers-modified AgNPs based microarray was much superior to the aptamer based microarray in fluorescence detection of proteins. The result shows that the detection limit of the sandwich assay using AgNPs probes for thrombin or platelet-derived growth factor-BB (PDGF-BB) is 80 or 8 times lower than that of aptamers used directly. For multiplex detection of proteins, the detection limit was 625 pM for PDGF-BB and 21 pM for thrombin respectively. The sandwich assay based on dual aptamers and AgNPs was sensitive and specific.  相似文献   

18.
A novel method for the detection of PDGF-BB has been developed using double-strand DNA-copper nanoparticles (dsDNA-CuNPs) as fluorescent markers. This assay relies on the premise that the aptamer- based probe undergoes a conformational change upon binding with target protein, and subsequently triggers polymerization reaction to generate dsDNA. Then, the resultant dsDNA can be used as a template for the formation of CuNPs with high fluorescence. Under the optimized conditions, the proposed assay allowed sensitive and selective detection of PDGF-BB with a detection limit of 4 nmol/L. This possibly makes it an attractive platform for the detection of a variety of biomolecules whose aptamers undergo similar conformational change.  相似文献   

19.
The coupling of aptamers with the coding and amplification features of inorganic nanocrystals is shown for the first time to offer a highly sensitive and selective simultaneous bioelectronic detection of several protein targets. This is accomplished in a single-step displacement assay in connection to a self-assembled monolayer of several thiolated aptamers conjugated to proteins carrying different inorganic nanocrystals. Electrochemical stripping detection of the nondisplaced nanocrystal tracers results in a remarkably low (attomole) detection limit, that is, significantly lower than those of existing aptamer biosensors. The new device offers great promise for measuring a large panel of disease markers present at ultralow levels during early stages of the disease progress.  相似文献   

20.
We report on a unique DNA aptamer, denoted MSA52, that displays universally high affinity for the spike proteins of wildtype SARS-CoV-2 as well as the Alpha, Beta, Gamma, Epsilon, Kappa, Delta and Omicron variants. Using an aptamer pool produced from round 13 of selection against the S1 domain of the wildtype spike protein, we carried out one-round SELEX experiments using five different trimeric spike proteins from variants, followed by high-throughput sequencing and sequence alignment analysis of aptamers that formed complexes with all proteins. A previously unidentified aptamer, MSA52, showed Kd values ranging from 2 to 10 nM for all variant spike proteins, and also bound similarly to variants not present in the reselection experiments. This aptamer also recognized pseudotyped lentiviruses (PL) expressing eight different spike proteins of SARS-CoV-2 with Kd values between 20 and 50 pM, and was integrated into a simple colorimetric assay for detection of multiple PL variants. This discovery provides evidence that aptamers can be generated with high affinity to multiple variants of a single protein, including emerging variants, making it well-suited for molecular recognition of rapidly evolving targets such as those found in SARS-CoV-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号