首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
邢爱萍 《分子催化》2011,25(3):202-208
采用溴化钯为催化剂前体,与非螯合型双齿膦配体L1(DPPFF)、联吡啶型双齿膦配体L2(P-PHOS)和二茂铁基手性双膦配体L3((S,Rp)-BPPF)制备络合物催化剂,以乙酰丙酮羰基铑为催化剂前体,与手性亚磷酸酯配体L4-L6制备络合物催化剂,将其分别应用于底物环己基甲醛或苯乙醛的不对称酰胺羰化反应中,研究结果表明...  相似文献   

2.
The anionic chelating ligand [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]- has been synthesized from [3,3'-Co(1,2-C2B9H11)2]- in very good yield in a one-pot process with an easy work-up procedure. The coordinating ability of this ligand has been studied with Group 11 metal ions (Ag, Au) and with transition-metal ions (Pd, Rh). The two dicarbollide halves of the [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]- ligand can swing about one axis in a manner analogous to the constituent parts of BINAP and ferrocenyl phosphine derivatives. All these ligands function as hinges, with the most important property in relation to the coordination requirements of the metal being the PP distance. [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]-, BINAP, ferrocenyl phosphine derivatives, and other hinge ligands present a range of different PP separations, and consequently different coordination spheres and dispositions around metal cations. To account for these differences, the equation Dphi2 = D02 + 4 R2cos2(90-phi/2) has been developed. It relates the PP distance (Dphi) in a complex with the minimum PP distance (D0) that is characteristic of the hinge-type ligand.  相似文献   

3.
Nano-sized phosphine and pyridine ligands having tetraphenylphenyl-, m-terphenyl-, poly(benzylether) moieties were synthesized. These ligands showed a remarkable effect on homogeneous transition metal catalyzed reactions. Pd(II) complexes with tetraphenylphenyl substituted pyridine ligands show high catalytic activities for oxidation of ketones suppressing Pd black formation and maintains the catalytic activity for a long time. Rh(I) complex catalysts with m-terphenyl substituted phosphine ligands showed remarkable rate acceleration in the hydrosilylation of ketones. In addition, several phosphinocalixarene ligands were synthesized and their coordination studies with Pd(II), Pt(II), Ru(II), Ir(I), and Rh(I) metals were documented. Ir(I) and Rh(I) cationic complexes with a 1,3,5-triphosphinocalix[6]arene ligand showed dynamic behavior with size-selective molecular recognition.  相似文献   

4.
Asymmetric cross-coupling of aryl iodides (ArI) with secondary arylphosphines (PHMe(Ar'), Ar' = (2,4,6)-R3C6H2; R = i-Pr (Is), Me (Mes), Ph (Phes)) in the presence of the base NaOSiMe3 and a chiral Pd catalyst precursor, such as Pd((R,R)-Me-Duphos)(trans-stilbene), gave the tertiary phosphines PMe(Ar')(Ar) in enantioenriched form. Sterically demanding secondary phosphine substituents (Ar') and aryl iodides with electron-donating para substituents resulted in the highest enantiomeric excess, up to 88%. Phosphination of ortho-substituted aryl iodides required a Pd(Et-FerroTANE) catalyst but gave low enantioselectivity. Observations during catalysis and stoichiometric studies of the individual steps suggested a mechanism for the cross-coupling of PhI and PHMe(Is) (1) initiated by oxidative addition to Pd(0) yielding Pd((R,R)-Me-Duphos)(Ph)(I) (3). Reversible displacement of iodide by PHMe(Is) gave the cation [Pd((R,R)-Me-Duphos)(Ph)(PHMe(Is))][I] (4), which was isolated as the triflate salt and crystallographically characterized. Deprotonation of 4-OTf with NaOSiMe3 gave the phosphido complex Pd((R,R)-Me-Duphos)(Ph)(PMeIs) (5); an equilibrium between its diastereomers was observed by low-temperature NMR spectroscopy. Reductive elimination of 5 yielded different products depending on the conditions. In the absence of a trap, the unstable three-coordinate phosphine complex Pd((R,R)-Me-Duphos)(PMeIs(Ph)) (6) was formed. Decomposition of 5 in the presence of PhI gave PMeIs(Ph) (2) and regenerated 3, while trapping with phosphine 1 during catalysis gave Pd((R,R)-Me-Duphos)(PHMe(Is))2 (7), which reacted with PhI to give 3. Deprotonation of 1:1 or 1.4:1 mixtures of cations 4-OTf gave the same 6:1 ratio of enantiomers of PMeIs(Ph) (2), suggesting that the rate of P inversion in 5 was greater than or equal to the rate of reductive elimination. Kinetic studies of the first-order reductive elimination of 5 were consistent with a Curtin-Hammett-Winstein-Holness (CHWH) scheme, in which pyramidal inversion at the phosphido ligand was much faster than P-C bond formation. The absolute configuration of the phosphine (SP)-PMeIs(p-MeOC6H4) was determined crystallographically; NMR studies and comparison to the stable complex 5-Pt were consistent with an RP-phosphido ligand in the major diastereomer of the intermediate Pd((R,R)-Me-Duphos)(Ph)(PMeIs) (5). Therefore, the favored enantiomer of phosphine 2 appeared to be formed from the major diastereomer of phosphido intermediate 5, although the minor intermediate diastereomer underwent P-C bond formation about three times more rapidly. The effects of the diphosphine ligand, the phosphido substituents, and the aryl group on the ratio of diastereomers of the phosphido intermediates Pd(diphos*)(Ar)(PMeAr'), their rates of reductive elimination, and the formation of three-coordinate complexes were probed by low-temperature 31P NMR spectroscopy; the results were also consistent with the CHWH scheme.  相似文献   

5.
A route to various substituted phosphine phosphonic acid compounds of the general form Ar(2)PC(6)H(4)PO(OH)(2) (Ar = Ph, o-MeC(6)H(4), o-MeOC(6)H(4)) has been investigated. These compounds were employed as bidentate anionic [P,O] ligands in neutral palladium complexes. The [P,O] chelating coordination was determined by X-ray crystallography of a representative palladium complex. Furthermore, the bifunctional ligand Ph(2)PC(6)H(4)PO(OH)Ph represents the first example of a chelating anionic [P,O] ligand resulting from the combination of a phosphine and a phosphinate moiety.  相似文献   

6.
The reactivity of the tetranuclear metallated palladium compound (Pd[mu 2-(C6H4)PPh2]Br)4 (1) with different ligands has been investigated with the aim of evaluating the influence of the entering ligand on the nature of the reaction products. The results confirmed the ability of the ligand [(C6H4)PPh2]- to expand a bridging [mu 2-] or a chelating [eta 2-] coordination mode, depending on the auxiliary ligands present in the complex. Bulky phosphines stabilize mononuclear species of formula (Pd[eta 2-(C6H4)PPh2]Br[P]), with a four-atom metallocycle, while small phosphines give dinuclear compounds. The molecular structures of three different metalated palladium compounds have been determined by single-crystal X-ray crystallography; the tetranuclear (Pd[mu 2-(C6H4)PPh2]Cl)4 (2), the dinuclear(Pd[mu 2-(C6H4)PPh2]Br[PMe3])2 (3), and the mononuclear (Pd[eta 2-(C6H4)PPh2]Br[PCBr]), (PCBr = P(o-BrC6H4)Ph2) (9) were obtained, the first one by halogen exchange reaction and the others by frame degradation of 1.  相似文献   

7.
Properties of dirhodium catalysts with cyclometalated aryl phosphine ligands have been studied. We report here the study of the acid-base reaction of Rh2(RCO2)2(PC)2(H2O)2 catalysts (PC = cyclometalated aryl phosphine) with different Lewis bases. The determination of the equilibrium constants of these reactions can be used to study to which extent the properties of the axial coordination site of the catalyst, considered the active site, are affected by modification of the metalated phosphines, the carboxylate ligands, or the incoming axial ligand. The trends in the computational density functional theory interaction energies show good agreement with the major trends in the equilibrium constants, thus enabling a further study of the influence of the modification of the ligand core.  相似文献   

8.
The Pt(II) coordination chemistry of oligocationic ammoniomethyl- and neutral aminomethyl-substituted triarylphosphines (L) is described. Complexes of the type PtX(2)(L)(2) (X = Cl, I) have been isolated and characterized. For the hexa-meta-ammoniomethyl-substituted ligands [1](6+) and [2](6+), two ligands always occupy a trans-configuration with respect to each other in complexes of the type PtX(2)(L)(2), while for the tri-para-ammoniomethyl-substituted ligand [7](3+), the trans/cis ratio is dependent on the ionic strength of the solution. This behaviour was not observed for the neutral aminomethyl-substituted ligands. In the crystal structure of trans-[PtI(2)(1)(2)]I(12), the geometrical parameters of the phosphine ligand [1](6+) are very similar to those found in the analogous complex of the benchmark ligand PPh(3), i.e. trans-PtI(2)(PPh(3))(2), indicating that no significant increase in the steric congestion is present in the complex. Instead, the coordination chemistry of this class of phosphine ligands is dominated by repulsive Coulombic inter-ligand interactions.  相似文献   

9.
The synthesis, structural characterisation and coordination behaviour of mono- and ditopic p-hydroquinone-based bis(pyrazol-1-yl)methane ligands is described (i.e., 2-(pz2CH)C6H3(OH)2 (2a), 2-(pz2CH)-6-(tBu)C6H2(OH)2 (2b), 2-(pz2CH)-6-(tBu)C6H2(OSiiPr3)(OH) (2c), 2,5-(pz2CH)2C6H2(OH)2 (4)). Ligands 2a, 2b and 4 can be oxidised to their p-benzoquinone state on a preparative scale (2a ox, 2b ox, 4 ox). An octahedral Ni II complex [trans-Ni(2c)2] and square-planar Pd II complexes [Pd2bCl2] and [Pd2b ox Cl2] have been prepared. In the two Pd II species, the ligands are coordinated only through their pyrazolyl rings. The fact that [Pd2bC12] and [Pd2b oxC12] are isolable compounds proves that redox transitions involving the p-quinone substituent are fully reversible. In [Pd2b oxCl2], the methine proton is highly acidic and can be abstracted with bases as weak as NEt(3). The resulting anion dimerises to give a dinuclear macrocyclic Pd II complex, which has been structurally characterised. The methylated ligand 2-(pz2CMe)C6H3O2 (11 ox) and its Pd II complex [Pd11 oxCl2] are base-stable. A new class of redox-active ligands is now available with the potential for applications both in catalysis and in materials science.  相似文献   

10.
A rational approach to heterometallic cluster formation is described that uses incommensurate symmetry requirements at two different metals to control the stoichiometry of the assembly. Critical to this strategy is the proper design and synthesis of hybrid ligands with coordination sites selective toward each metal. The phosphino-catechol ligand 4-(diphenylphosphino)benzene-1,2-diol (H(2)L) possesses both hard catecholate and soft phosphine donor sites and serves such a role, using soft (C(2)-symmetric) and hard (C(3)-symmetric) metal centers. The ML(3) catecholate complexes (M = Fe(III), Ga(III), Ti(IV), Sn(IV)) have been prepared and characterized as C(3)-symmetry precursors for the stepwise assembly (aufbau) of heterometallic clusters. While the single-crystal X-ray structure of the Cs(2)[TiL(3)] salt shows a C(1) mer-configuration in the solid -state, room-temperature solution NMR data of this and related complexes are consistent with either exclusive formation of the C(3)-fac-isomer with all PPh(2) donor sites syn to each other or facile fac/mer isomerization. Coordination of these [ML(3)](2)(-) (M = Ti(IV), Sn(IV)) metallaligands via their soft P donor sites to C(2)-symmetric PdBr(2) units gives exclusively pentametallic [M(2)Pd(3)Br(6)L(6)](4)(-) (M = Ti, Sn) clusters. These clusters have been fully characterized by spectral and X-ray structural data as C(3h) mesocates with Cs(+) or protonated 1,4-diazabicyclo[2.2.2]octane (DABCO.H(+)) cations incorporated into deep molecular clefts. Exclusive formation of this type of supramolecular species is sensitive to the nature of the counterions. Alkali cations such as K(+), Rb(+), and Cs(+) give high-yield formation of the respective clusters while NEt(3)H(+) and NMe(4)(+) yield none of the desired products. Extension of the aufbau assembly to produce related [M(2)Pd(3)Cl(6)L(6)](4)(-), [M(2)Pd(3)I(6)L(6)](4)(-), and [M(2)Cr(3)(CO)(12)L(6)](4)(-) (M = Ti, Sn) clusters has also been realized. In addition to this aufbau approach, self-assembly of several of these [M(2)Pd(3)Br(6)L(6)](4)(-) clusters from all eleven components (two M(IV), three PdBr(2), six H(2)L) was also accomplished under appropriate reaction conditions.  相似文献   

11.
2-(2'-Pyridyl)-3,4,5,6-tetraphenylpyridine 2 (HL), a ligand with both N,N-bidentate and N,N,C-terdentate coordination potential, was prepared in excellent yield by the Diels-Alder [2+4] cycloaddition of 2-cyanopyridine and tetraphenylcyclopentadien-1-one. Monometallic Pd(II) and Rh(III) complexes were formed which exhibit both types of ligand coordination (trans-[RhCl2(L)(NCMe)] 3, cis-[RhCl(L)(NCMe)2]PF6, cis-[RhCl2(HL)2]PF6 6, [RhCl(L)(HL)]PF6 7, [Rh(L)2]PF6 8, [Pd(OAc)(L)] 9 and [Pd(eta3-methallyl)(HL)]PF6) 10. The molecular structures of the ligand and six complexes, including the chloro-bridged dimer [RhCl(L)(micro-Cl)]2 5, were obtained by single crystal X-ray diffraction.  相似文献   

12.
Reaction of the dimeric species [(eta3-Ind)Pd(mu-Cl)]2 (1) (Ind = indenyl) with NEt3 gives the complex (eta(3-5)-Ind)Pd(NEt3)Cl (3), whereas the analogous reactions with BnNH2 (Bn = PhCH2) or pyridine (py) afford the complexes trans-L2Pd(eta1-Ind)Cl (L = BnNH2 (4), py (5)). Similarly, the one-pot reaction of 1 with a mixture of BnNH2 and the phosphine ligands PR3 gives the mixed-ligand, amino and phosphine species (PR3)(BnNH2)Pd(eta1-Ind)Cl (R = Cy (6a), Ph (6b)); the latter complexes can also be prepared by addition of BnNH2 to (eta(3-5)-Ind)Pd(PR3)Cl (R = Cy (2a), Ph (2b)). Complexes 6 undergo a gradual decomposition in solution to generate the dinuclear Pd(I) compounds (mu,eta3-Ind)(mu-Cl)Pd2(PR3)2 (R = Cy (7a), Ph (7b)) and the Pd(II) compounds (BnNH2)(PR3)PdCl2 (R = Cy (8a), Ph (8b)), along with 1,1'-biindene. The formation of 7 is proposed to proceed by a comproportionation reaction between in situ-generated Pd(II) and Pd0 intermediates. Interestingly, the reverse of this reaction, disproportionation, also occurs spontaneously to give 2. All new compounds have been characterized by NMR spectroscopy and, in the case of 3, 4, 5, 6a, 7a, 7b, and 8a, by X-ray crystallography.  相似文献   

13.
The new diphosphine ligands Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OC(O)C(6)H(4)PPh(2) (1: X=NH; 2: X=NPh; 3: X=O) and Ph(2)PC(6)H(4)C(O)O(CH(2))(2)O(CH(2))(2)OC(O)C(6)H(4)PPh(2) (5) as well as the monophosphine ligand Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OH (4) have been prepared from 2-diphenylphosphinobenzoic acid and the corresponding amino alcohols or diols. Coordination of the diphosphine ligands to rhodium, iridium, and platinum resulted in the formation of the square-planar complexes [(Pbond;P)Rh(CO)Cl] (6: Pbond;P=1; 7: Pbond;P=2; 8: Pbond;P=3), [(Pbond;P)Rh(CO)Cl](2) (9: Pbond;P=5), [(P-P)Ir(cod)Cl] (10: Pbond;P=1; 11: Pbond;P=2; 12: Pbond;P=3), [(Pbond;P)Ir(CO)Cl] (13: Pbond;P=1; 14: Pbond;P=2; 15: Pbond;P=3), and [(Pbond;P)PtI(2)] (18: Pbond;P=2). In all complexes, the diphosphine ligands are trans coordinated to the metal center, thanks to the large spacer groups, which allow the two phosphorus atoms to occupy opposite positions in the square-planar coordination geometry. The trans coordination is demonstrated unambiguously by the single-crystal X-ray structure analysis of complex 18. In the case of the diphosphine ligand 5, the spacer group is so large that dinuclear complexes with ligand 5 in bridging positions are formed, maintaining the trans coordination of the P atoms on each metal center, as shown by the crystal structure analysis of 9. The monophosphine ligand 4 reacts with [[Ir(cod)Cl](2)] (cod=cyclooctadiene) to give the simple derivative [(4)Ir(cod)Cl] (16) which is converted into the carbonyl complex [(4)Ir(CO)(2)Cl] (17) with carbon monoxide. The crystal structure analysis of 16 also reveals a square-planar coordination geometry in which the phosphine ligand occupies a position cis with respect to the chloro ligand. The diphosphine ligands 1, 2, 3, and 5 have been tested as cocatalysts in combination with the catalyst precursors [[Rh(CO)(2)Cl](2)] and [[Ir(cod)Cl](2)] or [H(2)IrCl(6)] for the carbonylation of methanol at 170 degrees C and 22 bar CO. The best results (TON 800 after 15 min) are obtained for the combination 2/[[Rh(CO)(2)Cl](2)]. After the catalytic reaction, complex 7 is identified in the reaction mixture and can be isolated; it is active for further runs without loss of catalytic activity.  相似文献   

14.
The preparation and characterization of new Zn(II) complexes of the type [(PPP)ZnR] in which R = Et (1) or N(SiMe(3))(2) (2) and PPP is a tridentate monoanionic phosphido ligand (PPP-H = bis(2-diphenylphosphinophenyl)phosphine) are reported. Reaction of ZnEt(2) and Zn[N(SiMe(3))(2)](2) with one equivalent of proligand PPP-H produced the corresponding tetrahedral zinc ethyl (1) and zinc amido (2) complexes in high yield. Homoleptic (PPP)(2) Zn complex 3 was obtained by reaction of the precursors with two equivalents of the proligand. Structural characterization of 1-3 was achieved by multinuclear NMR spectroscopy ((1)H, (13)C, and (31)P) and X-ray crystallography (3). Variable-temperature (1)H and (31)P?NMR studies highlighted marked flexibility of the phosphido pincer ligand in coordination at the metal center. A DFT calculation on the compounds provided theoretical support for this behavior. The activities of 1 and 2 toward the ring-opening polymerization of ε-caprolactone and of L- and rac-lactide were investigated, also in combination with an alcohol as external chain-transfer agent. Polyesters with controlled molecular parameters (M(n), end groups) and low polydispersities were obtained. A DFT study on ring-opening polymerization promoted by these complexes highlighted the importance of the coordinative flexibility of the ancillary ligand to promote monomer coordination at the reactive zinc center. Preliminary investigations showed the ability of these complexes to promote copolymerization of L-lactide and ε-caprolactone to achieve random copolymers whose microstructure reproduces the composition of the monomer feed.  相似文献   

15.
Reactions of MCl(3).3H(2)O (M = Rh and Ru) with the ligand 2-[(2-N-arylamino)phenylazo]pyridine [HL(1); NH(4)C(5)N=NC(6)H(4)N(H)C(6)H(4)(H) (HL(1a)), NH(4)C(5)N=NC(6)H(4)N(H)C(6)H(4)(CH(3)) (HL(1b)), and NH(4)C(5)N=NC(6)H(4)N(H)C(5)H(4)N (HL(1c))] in the presence of dilute NEt(3) afforded multiple products. In the case of rhodium, two green compounds, viz. [Rh(L(1))(2)](+) ([2](+)) and [RhCl(pap)(L(1))](+) ([3](+)), where L(1) and pap stand for the conjugate base of [HL(1)] and 2-(phenylazo)pyridine, respectively, were separated on a preparative thin layer chromatographic plate. The reaction of RuCl(3).3H(2)O, on the other hand, produced two brown compounds, viz. [RuCl(HL(1))(L(1))] (4) and [RuCl(pap)(L(1))] (5), respectively, as the major products. The X-ray structures of the representative complexes are reported. Except for complex 2, and 4, the products are formed due to the cleavage of an otherwise unreactive C(phenyl)-N(amino) bond. In complex 4, one of the tridentate ligands (HL(1)) does not use its maximum denticity and coordinates as a neutral bidentate donor. Plausible reasons for the differences in their modes of coordination of the ligands as in 2 and 4 have been discussed. The ligand pap in the cationic mixed ligand complex [3](+) reacts instantaneously with ArNH(2) to produce an ink-blue compound, [RhCl(HL(2))(L(1))](+) ([6](+)) in a high yield. The ligand HL(2) is formed due to regioselective fusion of ArNH(2) residue at the para carbon of the phenyl ring (with respect to the azo fragment) of pap in [3](+). The above complexes are generally intensely colored and show strong absorptions in the visible region, which are assigned to intraligand charge transfer transitions. These complexes undergo multiple and successive one-electron-transfer processes at the cathodic potentials. Electrogenerated cationic complexes of ruthenium(III), [4](+) and [5](+), showed rhombic EPR spectra at 77 K.  相似文献   

16.
Deprotonation of mixtures of the triazene complexes [RhCl(CO)2(p-MeC6H4NNNHC6H4Me-p)] and [PdCl(eta(3)-C3H5)(p-MeC6H4NNNHC6H4Me-p)] or [PdCl2(PPh3)(p-MeC6H4NNNHC6H4Me-p)] with NEt3 gives the structurally characterised heterobinuclear triazenide-bridged species [(OC)2Rh(mu-p-MeC6H4NNNC6H4Me-p)2PdLL'] {LL' = eta(3)-C3H5 1 or Cl(PPh3) 2} which, in the presence of Me3NO, react with [NBu(n)4]I, [NBu(n)4]Br, [PPN]Cl or [NBu(n)4]NCS to give [(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2PdCl(PPh3)]- (X = I 3-, Br 4-, Cl 5- or NCS 6-) and [NBu(n)4][(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 7- or Br 8-). The allyl complexes 7- and 8- undergo one-electron oxidation to the corresponding unstable neutral complexes 7 and 8 but, in the presence of the appropriate halide, oxidative substitution results in the stable paramagnetic complexes [NBu(n)4][X2Rh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 9- or Br 10-). X-Ray structural (9-), DFT and EPR spectroscopic studies are consistent with the unpaired electron of 9- and 10- localised primarily on the Rh(II) centre of the [RhPd]4+ core, which is susceptible to oxygen coordination at low temperature to give Rh(III)-bound superoxide.  相似文献   

17.
The ligand precursors P(CH2NH-3,5-(CF3)2C6H3)3 (1a), P(CH2NHPh)3 (1b), and P(CH2NH-3,5-Me2C6H3)3 (1c), react with the reagents Ti(NMe2)4 and tBuN=Ta(NEt2)3 to generate metal complexes of the type P(CH2NAr(R))3TiNMe2 (2a-c) and P(CH2NAr(R))3Ta=NtBu (3a-c) (where Ar(R) = 3,5-(CF3)2C6H3, Ph, and 3,5-Me2C6H3). Due to ring strain, the phosphine lone pair cannot chelate and is available to bind a second metal, and this feature can be utilized to synthesize heterometallic polynuclear complexes. The 31P chemical shifts observed upon complexation of the early transition metals to the amido donors are large and in the opposite direction expected for the increased C-P-C bond angles in these complexes; these unusual shifts are due to P-Ti and P-Ta distances that are significantly shorter than the sum of van der Waals radii. The reaction of 2c with Ni(CO)4 produces at first the bimetallic complex (CO)3Ni[P(CH2N-3,5-Me2C6H3)3TiNMe2] (4c), which gradually converts to the trimetallic complex (CO)2Ni[P(CH2N-3,5-Me2C6H3)3TiNMe2]2 (5c). The effect of the complexation of Ti and Ta fragments on the donor ability of the phosphine ligand was determined by the preparation of the bis-phosphine complexes trans-L(2)Rh(CO)Cl, (where L = 1a-c, 2a-c, and 3a-c) prepared by the reaction of the appropriate phosphine with [Rh(CO)2(mu-Cl)]2, and a measurement of the resultant CO stretching frequencies. Surprisingly, the complexes with the larger C-P-C angles are significantly poorer donors. Density functional theory calculations were performed to determine what factors affect the donor ability of the phosphine and if through-space interactions might play an important role in the observed electronic properties.  相似文献   

18.
The phosphinosilane compound PPh 2CH 2OSiMe 2H is potentially a bifunctional P approximately Si-H ligand. By treatment with the Ru (II) precursor RuH 2(H 2) 2(PCy 3) 2, the complex Ru(PPh 2CH 2OSiMe 2H) 3 ( 2), resulting from the coordination of three ligands and the displacement of two PCy 3 and two dihydrogen ligands, was formed. The different bonding modes for each of the three bifunctional P approximately Si-H ligands are discussed on the basis of multinuclear NMR, X-ray diffraction, and density functional theory studies. One ligand acts as a monodentate phosphine ligand with a pendant Si-H group, whereas the two others act as bidentate ligands with different Si-H bond activations. Indeed, an intermediate structure between two arrested forms 2a and 2b can be proposed: a dihydrido(disilyl)ruthenium(IV) species (form 2a) resulting from two Si-H oxidative additions or a hydrido(silyl)ruthenium(II) species (form 2b) presenting an agostic Si-H bond and only one oxidative addition.  相似文献   

19.
The ligand 2-mercapto-3,5-di-tert-butylaniline, H[L(AP)], an o-aminothiophenol, reacts with metal(II) salts of Ni and Pd in CH3CN or C2H5OH in the presence of NEt3 under strictly anaerobic conditions with formation of beige to yellow cis-[M(II)(L(AP))2] (M = Ni (1), Pd (2)) where (L(AP))1- represents the o-aminothiophenolate(1-) form. The crystal structure of cis-[Pd(II)(L(AP))2][HN(C2H5)3][CH3CO2] has been determined by X-ray crystallography. In the presence of air the same reaction produces dark blue solutions from which mixtures of the neutral complexes trans/cis-[M(II)(L(ISQ))2] (M = Ni (1a/1b), Pd (2a/2b), and Pt (3a/3b)) have been isolated as dark blue-black solid materials. By using HPLC the mixture of 3a/3b has been separated into pure samples of 3a and 3b, respectively; (L(ISQ))1- represents the o-iminothionebenzosemiquinonate(1-) pi-radical. The structures of 1a.dmf and 3a.CH2Cl2 have also been determined. All compounds are square-planar and diamagnetic. 1H NMR spectroscopy established the cis <==> trans equilibrium of 1a/1b, 2a/2b, and 3a/3b in CH2Cl2 solution where the isomerization rate is very fast for the Ni, intermediate for the Pd, and very slow for the Pt species. It is shown that the electronic structures of 1a/1b, 2a/2b, 3a, and 3b are best described as diradicals with a singlet ground state. The spectro- and electrochemistries of all complexes display the usual full electron transfer series where the monocation, the neutral species, the mono- and dianions have been spectroscopically characterized. X-band EPR spectra of the monocations [1a/1b]+ and [3a]+ support the assignment of an oxidation-state distribution as predominantly [M(II)(L(ISQ))(L(IBQ))]+ where (L(IBQ))0 represents the o-iminothionequinone level. In contrast, the EPR spectra of the monoanions [1a/1b]- and [3a]- indicate an [M(II)(L(ISQ))(L(AP)-H)]- distribution but with a significant contribution of the [M(I)(L(ISQ))(2)]- resonance hybrid; (L(AP)-H)2- represents the o-imidothiophenolato(2-) oxidation level. Analysis of the geometric features of 120 published structures of complexes containing ligands of the o-aminothiophenolate type show that high precision X-ray crystallography allows to discern the differing protonation and oxidation levels of these ligands. o-Aminothiophenolates are unequivocally shown to be noninnocent ligands; the (L(ISQ))1- radical form is quite prevalent in coordination compounds and the electronic structure of a number of published complexes must be reconsidered.  相似文献   

20.
Secondary phosphine complexes of the formula [(eta(5)-C(5)H(5))Ru(L)(2)(PHR(2))](+) BAr(F)(-) are prepared from cationic ruthenium N(2) complexes and PHR(2) (R = Ph (a), t-Bu (b), Cy (c)). Additions of t-BuOK or NaN(SiMe(3))(2) give the phosphido complexes (eta(5)-C(5)H(5))Ru(L)(2)(PR(2)) ((L)(2) = (PEt(3))(2) (5a-c), depe (6a,b)) in high NMR yields. These rapidly oxidize in air to give isolable RuP(=O)R(2) species. Complex 5a is more basic than the rhenium analogue (eta(5)-C(5)H(5))Re(NO)(PPh(3))(PPh(2)), and 6b is more basic than P-t-Bu(3). Complexes 5a-c and 6b are effective ligands for palladium-catalyzed Suzuki reactions. The catalyst from 6b is nearly as reactive as that from the benchmark ligand P-t-Bu(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号