首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sonication of an aqueous solution generates cavitation bubbles, which may coalesce and produce larger bubbles. This paper examines the effect of surface-active solutes on such bubble coalescence in an ultrasonic field. A novel capillary system has been designed to measure the change in the total volume resulting from the sonication of aqueous solutions with 515 kHz ultrasound pulses. This volume change reflects the total volume of larger gas bubbles generated by the coalescence of cavitation bubbles during the sonication process. The total volume of bubbles generated is reduced when surface-active solutes are present. We have proposed that this decrease in the total bubble volume results from the inhibition of bubble coalescence brought about by the surface-active solutes. The observed results revealed similarities with bubble coalescence data reported in the literature in the absence of ultrasound. It was found that for uncharged and zwitterionic surface-active solutes, the extent of bubble coalescence is affected by the surface activity of the solutes. The addition of 0.1 M NaCl to such solutes had no effect on the extent of bubble coalescence. Conversely, for charged surface-active solutes, the extent of bubble coalescence appears to be dominated by electrostatic effects. The addition of 0.1 M NaCl to charged surfactant solutions was observed to increase the total bubble volume close to that of the zwitterionic surfactant. This suggests the involvement of electrostatic interactions between cavitation bubbles in the presence of charged surfactants in the solution.  相似文献   

2.
The effect of varying the applied acoustic power on the extent to which the addition of water-soluble solutes affect the intensity of aqueous multibubble sonoluminescence (MBSL) has been investigated. Under most of the experimental conditions used, the addition of aliphatic alcohols to aqueous solutions was found to suppress the MBSL intensity, although an enhancement of the MBSL intensity was also observed under certain conditions. In contrast, the presence of an anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solutions generally enhanced the observed MBSL intensity. For a series of aliphatic alcohols and SDS, a strong dependence of the MBSL intensity on the applied acoustic power (in the range of 0.78-1.61 W/cm(2)) at 358 kHz was observed. The relative SL quenching was significantly higher at higher acoustic powers for the alcohol solutions, whereas the relative SL enhancement was lower at higher acoustic powers in SDS solutions. These observations have been interpreted in terms of a combination of material evaporation into the bubble, rectified diffusion, bubble clustering and bubble-bubble coalescence.  相似文献   

3.
The effect of adding surface-active solutes to water being insonated at 515 kHz has been investigated by monitoring the acoustic emission from the solutions. At low concentrations (<3 mM), sodium dodecyl sulfate causes marked changes to the acoustic emission spectrum which can be interpreted in terms of preventing bubble coalescence and declustering of bubbles within a cavitating bubble cloud. By conducting experiments in the presence of background electrolytes and also using non-ionic surfactants, the importance of electrostatic effects has been revealed. The results provide further mechanistic evidence for the interpretation of the effect of surface-active solutes on acoustic cavitation and hence on the mechanism of sonochemistry. The work will be valuable to many researchers in allowing them to optimize reaction and process conditions in sonochemical systems.  相似文献   

4.
Solute-induced quenching of sonoluminescence (SL) is reported for aqueous solutions of two homologous series of methyl esters and ketones using low (20 kHz) and high (515 kHz) ultrasound frequencies. SL data at 20 kHz from aqueous solutions containing alcohols and carboxylic acids are also presented to compare with previously published results at 515 kHz. In addition to supporting the previous findings on the existence of stable and transient bubbles at 515 and 20 kHz, respectively, the results suggest that the hydrogen-bonding characteristics of the solutes also play a major role in the extent of SL quenching. An increase in the SL intensity at low concentrations for most of the solutes suggests that these solutes increase the number of "active" bubbles by hindering the coalescence of bubbles. It is concluded that the effect of the solutes on the SL signal from aqueous solutions at both frequencies is primarily due to the balance of two factors, namely, the incorporation of solute within the bubble, leading to SL quenching, and the prevention of coalescence of the bubbles, leading to SL enhancement. At the higher frequency, SL quenching by the solutes is the main influence on the emission yield. However, at the lower frequency, hindrance to coalescence by the solutes dominates at lower concentrations and leads to SL enhancement. The implications of these results for optimizing conditions for aqueous sonochemical reactions are discussed.  相似文献   

5.
It has previously been reported that the addition of low concentrations of ionic surfactants enhances the steady-state sonoluminescence (SL) intensity relative to water (Ashokkumar; et al. J. Phys. Chem. B 1997, 101, 10845). In the current study, both sonoluminescence and passive cavitation detection (PCD) were used to examine the acoustic cavitation field generated at different acoustic pulse lengths in the presence of an anionic surfactant, sodium dodecyl sulfate (SDS). A decrease in the SL intensity was observed in the presence of low concentrations of SDS and short acoustic pulse lengths. Under these conditions, the inhibition of bubble coalescence by SDS leads to a population of smaller bubbles, which dissolve during the pulse "off time". As the concentration of surfactant was increased at this pulse length, an increase in the acoustic cavitation activity was observed. This increase is partly attributed to enhanced growth rate of the bubbles by rectified diffusion. Conversely, at long pulse lengths acoustic cavitation activity was enhanced at low SDS concentrations as a larger number of the smaller bubbles could survive the pulse "off time". The effect of reduced acoustic shielding and an increase in the "active" bubble population due to electrostatic repulsion between bubbles are also significant in this case. Finally, as the surfactant concentration was increased further, the effect of electrostatic induced impedance shielding or reclustering dominates, resulting in a decrease in the SL intensity.  相似文献   

6.
Bubble coalescence behavior in aqueous electrolyte (MgSO(4), NaCl, KCl, HCl, H(2)SO(4)) solutions exposed to an ultrasound field (213 kHz) has been examined. The extent of coalescence was found to be dependent on electrolyte type and concentration, and could be directly linked to the amount of solubilized gas (He, Ar, air) in solution for the conditions used. No evidence of specific ion effects in acoustic bubble coalescence was found. The results have been compared with several previous coalescence studies on bubbles in aqueous electrolyte and aliphatic alcohol solutions in the absence of an ultrasound field. It is concluded that the impedance of bubble coalescence by electrolytes observed in a number of studies is the result of dynamic processes involving several key steps. First, ions (or more likely, ion-pairs) are required to adsorb at the gas/solution interface, a process that takes longer than 0.5 ms and probably fractions of a second. At a sufficient interfacial loading (estimated to be less than 1-2% monolayer coverage) of the adsorbed species, the hydrodynamic boundary condition at the bubble/solution interface switches from tangentially mobile (with zero shear stress) to tangentially immobile, commensurate with that of a solid-liquid interface. This condition is the result of spatially nonuniform coverage of the surface by solute molecules and the ensuing generation of surface tension gradients. This change reduces the film drainage rate between interacting bubbles, thereby reducing the relative rate of bubble coalescence. We have identified this point of immobilization of tangential interfacial fluid flow with the "critical transition concentration" that has been widely observed for electrolytes and nonelectrolytes. We also present arguments to support the speculation that in aqueous electrolyte solutions the adsorbed surface species responsible for the immobilization of the interface is an ion-pair complex.  相似文献   

7.
Sonolysis of argon-saturated aqueous solutions of the nonvolatile surfactants sodium dodecyl sulfate (SDS) and sodium 1-pentanesulfonate (SPSo) was investigated at three ultrasonic frequencies under both continuous wave (CW) and pulsed ultrasound. Secondary carbon-centered radicals were detected by spin trapping using 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and electron paramagnetic resonance (EPR) spectroscopy. Following sonolysis, -*CH- radicals were observed for both surfactants under both sonication modes. Under CW at 354 kHz, the maximum plateau -*CH- radical yield was higher for SPSo than for SDS, indicating that SDS, which is more surface active under equilibrium conditions, accumulates at the gas/solution interface of cavitation bubbles to a lesser degree, compared with the less surface active surfactant, SPSo. However, after sonolysis (354 kHz) under pulsed ultrasound with a pulse length of 100 ms and an interval of 500 ms, the -*CH- radical yield at the plateau concentrations was higher for SDS than for SPSo due to increased amounts of SDS accumulation on the bubble surfaces. In contrast to the findings following sonolysis at 354 kHz, sonolysis of aqueous surfactant solutions at 620 kHz and 803 kHz showed a higher -*CH- radical yield for SDS compared with SPSo under CW but lower -*CH- radical yield with increasing pulsing interval, indicating a frequency dependence on accumulation. Results indicate that pulsing the ultrasonic wave has a significant effect on the relative adsorption ability of n-alkyl surfactants at the gas/solution surface of cavitation bubbles.  相似文献   

8.
Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.  相似文献   

9.
The effect of alcohols on the initial growth of the multibubble sonoluminescence (MBSL) intensity in aqueous solutions has been investigated. With increasing concentrations of the alcohols, the number of pulses required to grow the MBSL intensity to a steady state (N(crit)) increases (relative to that of water) initially to a maximum for all the alcohols used in this study, followed by a decrease for methanol and ethanol. The cause of the initial increase in N(crit) is attributed to the inhibition of bubble coalescence in the system. This inhibition in bubble coalescence results in a population of bubbles with a smaller size range and thus a larger number of pulses is required to grow the bubbles to their sonoluminescing size range. It is suggested that the decrease in the N(crit) at higher alcohol concentrations may be caused by an increase in the bubble growth by rectified diffusion.  相似文献   

10.
Simple ions in electrolytes exhibit different degrees of affinity for the approach to the free surface of water. This results in strong ion-specific effects that are particularly dramatic in the selective inhibition of bubble coalescence. I present here the calculation of electrostatic interaction between free surfaces of electrolytes caused by the ion accumulation or depletion near a surface. When both anion and cation are attracted to the surface (like H+ and Cl- in HCl solutions), van der Waals attraction facilitates approach of the surfaces and the coalescence of air bubbles. When only an anion or cation is attracted to the surface (like Cl- in NaCl solutions), an electric double layer forms, resulting in repulsive interaction between free surfaces. I applied the method of effective potentials (evaluated from published ion density profiles obtained in simulations) to calculate the ionic contribution to the surface-surface interaction in NaCl and HCl solutions. In NaCl, but not in HCl, the double-layer interaction creates a repulsive barrier to the approach of bubbles, in agreement with the experiments. Moreover, the concentration where ionic repulsion in NaCl becomes comparable in magnitude to the short-range hydrophobic attraction corresponds to the experimentally found transition region toward the inhibition of coalescence.  相似文献   

11.
A simple method is described for determining the size of sonoluminescence bubbles generated by acoustic cavitation. The change in the intensity of sonoluminescence, from 4 ms pulses of 515 kHz ultrasound, as a function of the "off" time between acoustic pulses, is the basis of the method. The bubble size determined in water was in the range of 2.8-3.7 mum.  相似文献   

12.
The ion specificity of bubble-bubble interactions in water remains unexplained. Whatever their valence all ion pairs either completely inhibit bubble coalescence or have no effect whatever. The phenomenon appears unrelated to Hofmeister specificity. Salts which inhibit coalescence enable the formation of a high density bubble column evaporator (BCE). If hot gas bubbles are injected into the bubble column evaporator at a significantly higher temperature than the water, the hot bubble surfaces can be used to produce thermal effects in dissolved and dispersed solutes. These two properties can be exploited for a wide range of applications. Among these, high temperature aqueous reactions catalyzed at low solution temperatures, measurement of enthalpies of vaporization of concentrated salt solutions, wastewater treatments by sterilization and de-watering and desalination are a few.  相似文献   

13.
In the present review, complexity in multibubble sonoluminescence (MBSL) is discussed. At relatively low ultrasonic frequency, a cavitation bubble is filled mostly with water vapor at relatively high acoustic amplitude which results in OH-line emission by chemiluminescence as well as emissions from weakly ionized plasma formed inside a bubble at the end of the violent bubble collapse. At relatively high ultrasonic frequency or at relatively low acoustic amplitude at relatively low ultrasonic frequency, a cavitation bubble is mostly filled with noncondensable gases such as air or argon at the end of the bubble collapse, which results in relatively high bubble temperature and light emissions from plasma formed inside a bubble. Ionization potential lowering for atoms and molecules occurs due to the extremely high density inside a bubble at the end of the violent bubble collapse, which is one of the main reasons for the plasma formation inside a bubble in addition to the high bubble temperature due to quasi-adiabatic compression of a bubble, where “quasi” means that appreciable thermal conduction takes place between the heated interior of a bubble and the surrounding liquid. Due to bubble–bubble interaction, liquid droplets enter bubbles at the bubble collapse, which results in sodium-line emission.  相似文献   

14.
A review of the effects of a range of surface active solutes, aliphatic alcohols, alkyl amines, carboxylic acids and surfactants on bubbles exposed to ultrasound is presented. The solutes are shown to affect the phenomenon of sonoluminescence (SL) in quite a number of different ways. Ionic surfactants have a strong influence on interbubble interactions which at low concentrations (1 mM) results in an enhancement in SL. Alcohols and the neutral forms of the organic acids and amines induce SL quenching. The SL quenching is attributed to the formation and accumulation of decomposition products in the hot core of an oscillating bubble resulting from the evaporation of volatile solute adsorbed at the bubble interface. Some results are presented on the influence of low concentrations of alcohol on the SL generated from a single bubble and on the bubble dynamics, when exposed to ultrasound. These results add support to the interpretation given for solute-induced effects observed in multibubble systems. It is also shown that SL can be used as an internal light source to excite aromatic solutes that subsequently fluoresce, a process referred to as sonophotoluminescence.  相似文献   

15.
An ultrasonic reactor that combined a standing-wave-type transducer and a horn-type emitter was constructed and the ultrasonic frequency of the standing-wave-type transducer was varied and the sonochemical reaction rates were estimated. The synergy effect was observed below 100 kHz. In order to consider the mechanism of effect of synergy, the acoustic noise, the sonochemical luminescence and the bubble behavior in the reactor were investigated. The frequency spectrum of acoustic noise indicated that the synergy effect came from the increase of number of cavitation bubbles.  相似文献   

16.
Mean acoustic bubble temperatures have been measured using a methyl radical recombination (MRR) method, at three ultrasound frequencies (20, 355, and 1056 kHz) in aqueous tert-butyl alcohol solutions (0-0.5 M). The method is based on yield measurements of some of the hydrocarbon products formed from the recombination of methyl radicals that are thermally generated within collapsing bubbles containing tert-butyl alcohol vapor. The mean bubble temperatures were found to decrease substantially with increasing tert-butyl alcohol concentration at 355 and 1056 kHz but only to a small extent at 20 kHz. Extrapolating the mean temperatures measured to zero concentration of tert-butyl alcohol, at a bulk solution temperature of 20 degrees C, gave the order 355 kHz (4300 +/- 200 K) > 1056 kHz (3700 +/- 200 K) > 20 kHz (3400 +/- 200 K). It is also concluded that the temperature derived from the MRR method is a useful diagnostic parameter for sensing the thermal conditions within an active acoustic bubble. However, attention must be given to the fact that the temperature derived from the MRR method is not theoretically well defined.  相似文献   

17.
The phenomenon of sonoluminescence has been known for over 60 years but it is only over the last few years that a better understanding of its origins has emerged. In part the discovery of single bubble sonoluminescence, just over 10 years ago, has been a major contributor to the theoretical advances that have been made to account for the event. This Minireview is from the perspective of a physical chemist and considers the progress that has been made in understanding the role of solutes in affecting the sonoluminescence from a solution exposed to ultrasound. The physicochemical properties of solutes that are important in controlling both single bubble and multibubble sonoluminescence are discussed.  相似文献   

18.
Conditions under which electric discharges can arise in cavitation bubbles pulsating in a multibubble cavitation field are considered. Possible electric discharge types are discussed. It is shown that, in an electric breakdown in a cavitation bubble, the probability of the formation of a streamer (all the more, a leader) or corona discharge is negligibly small. It was found that, in a cavitation bubble, the development of an electron avalanche is most probable. The basic parameters of an elementary electron avalanche are estimated.  相似文献   

19.
The multibubble sonoluminescence (MBSL) emission intensity from aqueous solutions containing simple aliphatic organic acids (RCOOH) and bases (RNH2) and mixtures of the two types of solutes has been examined as a function of pH. In solutions containing either an organic acid or base, under pH conditions where the solutes are predominately in their ionized form (i.e., RCOO- and RNH3+), the MBSL intensity is identical with that obtained in pure water. Alternatively, under pH conditions where the solutes are in their un-ionized form the MBSL intensity is suppressed. However, in solute mixtures of RCOO- and RNH3+ in the pH range of 7 to 9, the MBSL intensity was significantly suppressed relative to that from water. To explain the results of the mixed solute system it has been postulated that when the bubble/solution interface experiences the extreme temperature conditions that accompany bubble collapse, proton transfer occurs between acid-base ion-pair complexes, [RCOO-...RNH3+], adsorbed at the bubble/solution interface. The neutral forms of the solutes then evaporate into the bubble during its expansion phase and through a complex series of events, over a number of bubble oscillations, reduce the core temperature of the collapsing bubble and hence the SL intensity.  相似文献   

20.
Jing L  Dan G  Jianbin L  Guoxin X 《Electrophoresis》2011,32(3-4):414-422
A numerical method is used to simulate the motion and coalescence of air bubbles in a micro-channel under a nonuniform electric field. The channel is equipped with arrays of electrodes embedded in its wall and voltages are applied on the electrodes to generate a specified electric field gradient in the longitudinal direction. In the study, the Navier-Stokes equations are solved by using the level set method handling the deformable/moving interfaces between the bubbles and the ambient liquid. Both the polarization Coulomb force and the dielectrophoresis force are considered as the force source of the Navier-Stokes equations by solving the Maxwell's equations. The flow field equations and the electric field equations are coupled and solved by using the finite element method. The electric field characteristics and the dynamic behavior of a bubble are analyzed by studying the distributions of the electric field and the force, the deformation and the moving velocity of the air bubble. The result suggests that the model of dispersed drops suspended in the immiscible dielectric liquid and driven by a nonuniform electric field is an effective method for the transportation and coalescence of micro-drops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号