首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of AlN nucleation layer (NL) growth conditions on the quality of GaN layer deposited on (0 0 0 1) sapphire by organometallic chemical vapor phase epitaxy (OMVPE) has been investigated by X-ray diffraction, atomic force microscopy and transmission electron microscopy. Growth pressure, temperature and time were varied in this study. Results indicate that there exists an optimal thickness of the NL is required for optimal growth. Both thin and thick NLs are not conducive to the growth of high-quality GaN layers. Arguments have been developed to rationalize these observations.  相似文献   

2.
The quality of GaN epilayers grown by molecular beam epitaxy on substrates such as sapphire and silicon carbide has improved considerably over the past few years and in fact now produces AlGaN/GaN HEMT devices with characteristics among the best reported for any growth technique. However, only recently has the bulk defect density of MBE grown GaN achieved levels comparable to that obtained by MOVPE and with a comparable level of electrical performance. In this paper, we report the ammonia-MBE growth of GaN epilayers and HFET structures on (0 0 0 1)sapphire. The effect of growth temperature on the defect density of single GaN layers and the effect of an insulating carbon doped layer on the defect density of an overgrown channel layer in the HFET structures is reported. The quality of the epilayers has been studied using Hall effect and the defect density using TEM, SEM and wet etching. The growth of an insulating carbon-doped buffer layer followed by an undoped GaN channel layer results in a defect density in the channel layer of 2×108 cm−2. Mobilities close to 490 cm2/Vs at a carrier density of 8×1016 cm−3 for a 0.4 μm thick channel layer has been observed. Growth temperature is one of the most critical parameters for achieving this low defect density both in the bulk layers and the FET structures. Photo-chemical wet etching has been used to reveal the defect structure in these layers.  相似文献   

3.
《Journal of Crystal Growth》2003,247(3-4):261-268
GaN and AlN films were grown on (1 1 1) and (0 0 1) Si substrates by separate admittances of trimethylgallium (or trimethylaluminum) and ammonia (NH3) at 1000°C. A high temperature (HT) or low temperature (LT) grown AlN thin layer was employed as the buffer layer between HT GaN (or HT AlN) film and Si substrate. Experimental results show that HT AlN and HT GaN films grown on the HT AlN-coated Si substrates exhibit better crystalline quality than those deposited on the LT AlN-coated Si substrates. Transmission electron microscopy (TEM) of the HT GaN/HT AlN buffer layer/(1 1 1)Si samples shows a particular orientation relationship between the (0 0 0 1) planes of GaN film and the (1 1 1) planes of Si substrate. High quality HT GaN films were achieved on (1 1 1) Si substrates using a 200 Å thick HT AlN buffer layer. Room temperature photoluminescence spectra of the high quality HT GaN films show strong near band edge luminescence at 3.41 eV with an emission linewidth of ∼110 meV and weak yellow luminescence.  相似文献   

4.
Two kinds of GaN samples were grown on GaAs(0 0 1) substrates. One is grown on nitridized GaAs surface, the other is grown on nitridized AlAs buffer GaAs substrate. X-ray diffraction and photoluminescence measurements find that the GaN sample directly grown on GaAs substrate is pure cubic phase and those grown on AlAs buffer is pure hexagonal phase. The present study shows that the phase of GaN samples grown on GaAs substrates can be controlled using different buffer layers.  相似文献   

5.
The hydride vapor phase epitaxy (HVPE) of {0 0 0 1} AlN films on {1 1 1} Si substrates covered with epitaxial {1 1 1} cubic SiC (3C-SiC intermediate layers) was carried out. 3C-SiC intermediate layers are essential to obtain high-quality AlN films on Si substrates, because specular AlN films are obtained with 3C-SiC intermediate layers, whereas rough AlN films are obtained without 3C-SiC intermediate layers. We determined the polarities of AlN films and the underlying 3C-SiC intermediate layers by convergent beam electron diffraction (CBED) using transmission electron microscopy. For the first time, the polarities of the AlN films and the 3C-SiC intermediate layers were determined as Al and Si polarities, respectively. The AlN films were hardly etched by aqueous KOH solution, thereby indicating Al polarity. This supports the results obtained by CBED. The result is also consistent with electrostatic arguments. An interfacial structure was proposed. The 3C-SiC intermediate layers are promising for the HVPE of AlN films on Si substrates.  相似文献   

6.
We have investigated the morphology of the high-temperature-grown AlN nucleation layer and its role in the early stage of GaN growth, by means of transmission electron microscopy. The nitride was selectively grown on a 7-degree off-oriented (0 0 1) patterned Si substrate by metalorganic vapor phase epitaxy. AlN was deposited on the inclined unmasked (1 1 1) facet in the form of islands. The size of the islands varied along the slope, which is attributable to the diffusion of the growth species in the vapor phase. The GaN nucleation occurred at the region where rounded AlN islands formed densely. The threading dislocations were observed to generate in the GaN nucleated region.  相似文献   

7.
We describe the growth of GaN on Si(1 1 1) substrates with AlxGa1−xN/AlN buffer layer by ammonia gas source molecular beam epitaxy (NH3-GSMBE). The influence of the AlN and AlxGa1−xN buffer layer thickness and the Al composition on the crack density of GaN has been investigated. It is found that the optimum thickness is 120 and 250 nm for AlN and AlxGa1−xN layers, respectively. The optimum Al composition is between 0.3<x<0.6.  相似文献   

8.
The influence of Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (1 1 1) substrate by metalorganic chemical vapor deposition (MOCVD) has been systematically studied. Compared with the sample without Al pre-deposition, optimum Al pre-deposition time could improve the AlN buffer layer crystal quality and reduce the root mean square (RMS) roughness. Whereas, overlong Al-deposition time deteriorated the AlN crystal quality and Al-deposition patterns could be found. Cracks and melt-back etching patterns appeared in the GaN layer grown without Al pre-deposition. With suitable Al-deposition time, crack-free 2.0 μm GaN was obtained and the full-width at half-maximum (FWHM) of (0 0 2) plane measured by double crystal X-ray diffraction (DCXRD) was as low as 482 arcsec. However, overlong Al-deposition time would result in a great deal of cracks, and the crystal quality of GaN layer deteriorated. The surface of GaN layer became rough in the region where the Al-deposition patterns were formed due to overlong Al-deposition time.  相似文献   

9.
Nucleation and growth of wurtzite AlN layers on nominal and off-axis Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy is reported. The nucleation and the growth dynamics have been studied in situ by reflection high-energy electron diffraction. For the films grown on the nominal Si(0 0 1) surface, cross-sectional transmission electron microscopy and X-ray diffraction investigations revealed a two-domain film structure (AlN1 and AlN2) with an epitaxial orientation relationship of [0 0 0 1]AlN || [0 0 1]Si and AlN1 || AlN2 || [1 1 0]Si. The epitaxial growth of single crystalline wurtzite AlN thin films has been achieved on off-axis Si(0 0 1) substrates with an epitaxial orientation relationship of [0 0 0 1]AlN parallel to the surface normal and 0 1 1 0AlN || [1 1 0]Si.  相似文献   

10.
We report the structural and electrical properties of InAsSb epilayers grown on GaAs (0 0 1) substrates with mid-alloy composition of 0.5. InSb buffer layer and InAsxSb1−x step-graded (SG) buffer layer have been used to relax lattice mismatch between the epilayer and substrate. A decrease in the full-width at half-maximum (FWHM) of the epilayer is observed with increasing the thickness of the InSb buffer layer. The surface morphology of the epilayer is found to change from 3D island growth to 2D growth and the electron mobility of the sample is increased from 5.2×103 to 1.1×104 cm2/V s by increasing the thickness of the SG layers. These results suggest that high crystalline quality and electron mobility of the InAs0.5Sb0.5 alloy can be achieved by the growth of thick SG InAsSb buffer layer accompanied with a thick InSb buffer layer. We have confirmed the improvement in the structural and electrical properties of the InAs0.5Sb0.5 epilayer by quantitative analysis of the epilayer having a 2.09 μm thick InSb buffer layer and 0.6 μm thickness of each SG layers.  相似文献   

11.
In this paper, a single crystalline GaN grown on Si(1 1 1) is reported using a GaN buffer layer by a simple vacuum reactive evaporation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence measurement (PL), and Hall measurement results indicate that the single crystalline wurtzite GaN was successfully grown on the Si(1 1 1) substrate. The surface of the GaN films is flat and crack-free. A pronounced GaN(0 0 0 2) peak appears in the XRD pattern. The full-width at half-maximum (FWHM) of the double-crystal X-ray rocking curve (DCXRC) for (0 0 0 2) diffraction from the GaN epilayer is 30 arcmin. The PL spectrum shows that the GaN epilayer emits light at the wavelength of 365 nm with an FWHM of 8 nm (74.6 meV). Unintentionally doped films were n-type with a carrier concentration of 1.76×1018/cm3 and an electron mobility of 142 cm3/V s. The growth technique described was simple but very powerful for growing single crystalline GaN films on Si substrate.  相似文献   

12.
Selective MOVPE growth of GaN microstructure on silicon substrates has been investigated using SiO2 mask having circular or stripe window. In case of (0 0 1)substrate, grooves with (1 1 1) facets at the sides were made by using the etching anisotropy of a KOH solution. On the (1 1 1) facets of patterned silicon substrate (or on the as opened window region of (1 1 1) substrate), growth of wurtzite GaN was performed, of which the c-axis is oriented along the 1 1 1 axis of silicon. The photoluminescence and X-ray diffraction analysis were performed to characterize the single crystal to reveal the effect of the growth conditions of the intermediated layer and the microstructure.  相似文献   

13.
Using an AlInN intermediate layer, GaN was grown on (1 1 1)Si substrate by selective metalorganic vapor phase epitaxy. The variation of the surface morphology was investigated as a function of the In composition and thickness of the AlInN layer. It was found that the In composition in the AlInN layer was a function of the growth temperature and thickness. Because of the small band offset at the AlInN/Si hetero-interface, we have achieved a low series resistance of the order of 9 Ω (0.0036 Ω cm2) across the GaN/AlInN/AlN/Si layer structure.  相似文献   

14.
Purely wurtzite phase needle crystals and epitaxial layers of GaN were grown by the ammonothermal method using an NH4I mineralizer. The inclusion of zincblende phase GaN was effectively eliminated by increasing the growth temperature higher than 500 °C. Accordingly, an approximately 20-μm-thick GaN epitaxial layer was achieved on the Ga-polar face of a c-plane GaN seed wafer at 520 °C. Although the characteristic deep state emission band dominated the room temperature photoluminescence spectrum, the near-band-edge emission of GaN was observed for both the needle crystals and the epitaxial layers. These results encourage one to grow better quality GaN crystals at a high growth rate under high-temperature growth conditions.  相似文献   

15.
High-quality superlattice structures of GaN/AlGaN were grown on (0 0 0 1) sapphire substrates by molecular beam epitaxy. The threading dislocation density was reduced by growing low-temperature AlN layers in between the high-temperature GaN. In addition, in situ monitoring of the growth rate was achieved using pyrometric interferometry. Cross-sectional transmission electron microscopy of the superlattice structures revealed abrupt interfaces between GaN/AlGaN and excellent layer uniformity. We observed intersubband absorption at wavelengths as short as 1.52 μm in the GaN/AlGaN material system. A range of intersubband absorption peaks was observed between 1.52 and 4.2 μm by varying the well thickness and barrier Al content. In addition, the distribution of the built-in electric field between the well and barrier layers was also found to affect the intersubband transition wavelength.  相似文献   

16.
Superlattices of cubic gallium nitride (GaN) and gallium arsenide (GaAs) were grown on GaAs(1 0 0) substrates using metalorganic vapor phase epitaxy (MOVPE) with dimethylhydrazine (DMHy) as nitrogen source. Structures grown at low temperatures with varying layer thicknesses were characterized using high resolution X-ray diffraction and atomic force microscopy. Several growth modes of GaAs on GaN were observed: step-edge, layer-by-layer 2D, and 3D island growth. A two-temperature growth process was found to yield good crystal quality and atomically flat surfaces. The results suggest that MOVPE-grown thin GaN layers may be applicable to novel GaAs heterostructure devices.  相似文献   

17.
Multi-domained heteroepitaxial rutile-phase TiO2 (1 0 0)-oriented films were grown on Si (1 0 0) substrates by using a 30-nm-thick BaF2 (1 1 1) buffer layer at the TiO2–Si interface. The 50 nm TiO2 films were grown by electron cyclotron resonance oxygen plasma-assisted electron beam evaporation of a titanium source, and the growth temperature was varied from 300 to 600 °C. At an optimal temperature of 500 °C, X-ray diffraction measurements show that rutile phase TiO2 films are produced. Pole figure analysis indicates that the TiO2 layer follows the symmetry of the BaF2 surface mesh, and consists of six (1 0 0)-oriented domains separated by 30° in-plane rotations about the TiO2 [1 0 0] axis. The in-plane alignment between the TiO2 and BaF2 films is oriented as [0 0 1] TiO2 || BaF2 or [0 0 1] TiO2 || BaF2 . Rocking curve and STM analyses suggest that the TiO2 films are more finely grained than the BaF2 film. STM imaging also reveals that the TiO2 surface has morphological features consistent with the BaF2 surface mesh symmetry. One of the optimally grown TiO2 (1 0 0) films was used to template a CrO2 (1 0 0) film which was grown via chemical vapor deposition. Point contact Andreev reflection measurements indicate that the CrO2 film was approximately 70% spin polarized.  相似文献   

18.
GaN nanorods were grown on Si(1 1 1) substrates by using hydride vapor phase epitaxy, and the crystallographic characteristics associated with their preferred growth directions were investigated by utilizing synchrotron X-ray reciprocal space mapping in a grazing incidence geometry and scanning electron microscopy. Crystallographic analysis reveals that the nanorods containing both wurtzite and zinc blende phase tend to have narrower distribution of the preferred growth directions than those containing only wurtzite phase. This tendency is partly attributed to the subtle interplay between polytypism and the preferred growth directions of GaN nanorods.  相似文献   

19.
High quality GaN layer was obtained by insertion of high temperature grown AlN multiple intermediate layers with migration enhanced epitaxy method by the RF-plasma assisted molecular beam epitaxy on (0 0 01) sapphire substrates. The propagating behaviors of dislocations were studied, using a transmission electron microscope. The results show that the edge dislocations were filtered at the AlN/GaN interfaces. The bending propagation of threading dislocations in GaN above AlN interlayers was confirmed. Thereby, further reduction of dislocations was achieved. Dislocation density being reduced, the drastic increase of electron mobility to 668 cm2/V s was obtained at the carrier density of 9.5×1016 cm−3 in Si doped GaN layer.  相似文献   

20.
The effect of the N/Al ratio of AlN buffers on the optical and crystal quality of GaN films, grown by metalorganic chemical vapor deposition on Si(1 1 1) substrates, has been investigated. By optimizing the N/Al ratio during the AlN buffer, the threading dislocation density and the tensile stress have been decreased. High-resolution X-ray diffraction exhibited a (0 0 0 2) full-width at half-maximum as low as 396 acrsec. The variations of the tensile stress existing in the GaN films were approved by the redshifts of the donor bound exiton peaks in the low-temperature photoluminescence measurement at 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号