首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用射频磁控溅射技术在Pt/Ti/SiO2/Si(100)衬底上生长了掺镧钛酸铅(PLT)铁电薄膜.用X射线衍射技术(XRD)研究了PLT薄膜结晶性能,结果表明PLT薄膜为 (111)择优取向钙钛矿相织构.使用原子力显微镜(AFM)和压电响应力显微镜(PFM) 分别观察了PLT薄膜的表面形貌和对应区域的电畴结构.PFM观察显示PLT薄膜中存在90°纳米带状畴,电畴的极化为首尾相接的低能量的排列方式,带状畴的宽度为20—60nm.研究了PLT10铁电薄膜的制备条件与性能之间的关系.发现在优化条件下制备的PLT10铁电薄膜的介电常数εr为365、介电损耗tgδ为0.02,热释电系数γ为2.18×10-8C·(cm2·K)-1,可以满足制备非制冷红外探测器的需要. 关键词: PLT薄膜 电畴 PFM 极化  相似文献   

2.
Bi3.25La0.75Ti3O12 (BLT) thin films were fabricated on Pt/Ti/SiO2/Si(1 0 0) substrates by chemical solution deposition (CSD), and the dependence of ferroelectric and dielectric properties of the as-deposited BLT thin films on excess Bi content in precursor sols was studied. It is found that the prepared BLT thin film shows the best polarization-electric field, capacitance-voltage and dielectric constant (?r)-frequency characteristics, when the value of excess Bi content in precursor sols is 10%. In detail, its remnant polarization (2Pr) value is 40 μC/cm2, the capacitance tunability is 21% measured at room temperature under conditions of an applied voltage of 8 V and measurement frequency of 10 kHz, and the ?r is 696 at 100 kHz frequency.  相似文献   

3.
The hydrogen doped ZnO (ZnO:H) thin films were deposited on quartz glass substrates by radio frequency magnetron sputtering. The doping characteristics of ZnO:H thin films with varied hydrogen flow ratio were investigated. At low hydrogen flow ratio (H2/(H2+Ar)≤0.02), the ZnO:H thin films exhibited dominant (002) peaks from X-ray diffraction and the lattice constants became smaller. The particles were mainly a columnar structure. The particles’ size became smaller, and the island-like structure appeared on the thin films surface. In addition, the low resistivity properties of ZnO:H thin films was ascribed to the increase of the carriers concentration and carriers mobility; When the hydrogen flow ratio was more than 0.02 (M≥0.02), two absorption bands at 1400–1800 cm?1 and 3200–3900 cm?1 were observed from the FT-IR spectra, which indicated that the ZnO:H thin films had typical Zn–H bonding, O–H bonding (hydroxyl), and Zn–H–O bonding (like-hydroxyl). The scanning electron microscope (SEM) results show that a large number of hydroxyl agglomeration formed an island-like structure on the thin films surface. The absorption peak at about 575 cm?1 in the Raman spectra indicated that oxygen vacancies (VO) defects were produced in the process of high hydrogen doping. In this condition, the low resistivity properties of ZnO:H thin films were mainly due to the increasing electron concentration resulted from VO. Meanwhile, the Raman absorption peaks at approximately 98 cm?1 and 436 cm?1 became weaker, and the (002) XRD diffraction peak quenched and the lattice constants increased, which shows that the ZnO:H thin films no longer presented a typical ZnO hexagonal wurtzite structure. With the increasing of hydrogen flow ratio, the optical transmittance of ZnO:H thin films in the ultraviolet band show a clear Burstein–Moss shift effect, which further explained that electron concentration was increased due to the increasing VO with high hydrogen doping concentration. Moreover, the optical reflectance of the thin films decreased, indicating the higher roughness of the films surface. It was noteworthy that etching effect of H plasma was obvious in the process of heavy hydrogen doping.  相似文献   

4.
Lead zirconate titanate (PZT) films were fabricated on Pt(111)/Ti/SiO2/Si(100) using the triol sol--gel method. The effect of the pre-heating temperature on the phase transformations, microstructures, electrical properties and ferroelectric properties of the PZT thin films was investigated. Randomly-oriented PZT thin films pre-heated at 400°C for 10?min and annealed at 600°C for 30?min showed well-defined ferroelectric hysteresis loops with a remanent polarization of 26.57?µC?cm?2 and a coercive field of 115.42?kV?cm?1. The dielectric constant and dielectric loss of the PZT films were 621 and 0.0395, respectively. The microstructures of the thin films are dense, crack-free and homogeneous with fine grains about 15–20?nm in size.  相似文献   

5.
《Physics letters. A》1999,251(5):336-339
The structural and electrical characteristics of H+-implanted SrBi2Ta2O9 (SBT) ferroelectric thin films were investigated by X-ray diffraction analysis and electrical measurements. 25 keV H+ with doses ranging from 1 × 1014/cm2 to 3 × 1015/cm2 were implanted into the Sol-Gel prepared SBT ferroelectric thin films. The X-ray diffraction patterns of SBT films show that no difference appears in the crystalline structure of H+-implanted SBT films compared with unimplanted films. Ferroelectric properties measurements indicate that both remnant polarization and the coercive electric field of H+-implanted SBT films decrease with increasing the implantation dose. The disappearance of ferroelectricity was found in the H+-implanted SBT films up to a dose of 3 × 1015/cm2. The leakage current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the H+-implanted SBT films were also discussed before and after a recovery process.  相似文献   

6.
(Pb0.95Ca0.05)(Nb0.02Zr0.80Ti0.20)O3 [PCNZT] thin films were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering with and without a LaNiO3 [LNO] buffer layer. Ca and Nb elements in PZT films enhance the ferroelectric property, LaNiO3 buffer layer improves the crystal quality of the PCNZT thin films. PCNZT thin films possess better ferroelectric property than that of PZT films for Ca and Nb ion substitution, moreover, PCNZT thin films with a LNO buffer layer possess (1 0 0) orientation and good ferroelectric properties with high remnant polarization (Pr = 38.1 μC/cm2), and low coercive field (Ec = 65 kV/cm), which is also better than that of PCNZT thin films without a LNO buffer layer (Pr = 27.9 μC/cm2, Ec = 74 kV/cm). The result shows that enhanced ferroelectric property of PZT films can be obtained by ion substitution and buffer layer.  相似文献   

7.
High-quality ZnO thin films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO/Al2O3 interface. The full width at half maximum values of the 0002 and $30\bar{3}2$ ZnO ω-rocking curves are 467.8 and 813.5 arc sec for a 600 nm thick ZnO film. A screw dislocation density of 4.35×108 cm?2 and an edge dislocation density of 3.38×109 cm?2 are estimated by X-ray diffraction. The surface of the ZnO epilayers contains hexagonal pits, which can be observed in the Zn-polar ZnO. The films have a resistivity of 0.119 Ω?cm, an electron concentration of 6.85×1017 cm?3, and a mobility of 76.5 cm2?V?1?s?1 at room temperature. Low temperature photoluminescence measurements show good optical properties comparable to ZnO single crystals.  相似文献   

8.
Multiferroic and resistive switching properties of single-phase polycrystalline perovskite BiFe0.95Cr0.05O3 (BFCO) thin films grown on Pt/Ti/SiO2/Si substrates by radio-frequency magnetron sputtering were investigated. The BFCO film shows ferroelectric and magnetic properties simultaneously at room temperature, and also exhibits a good piezoelectric property with remanent effective piezoelectric coefficient d 33,f ~55±4 pm/V. An obviously resistive switching behavior was observed in the BFCO thin film at room temperature, which was discussed by the filamentary conduction mechanism associated with the redistribution of oxygen vacancies.  相似文献   

9.
The multiferroic (PMN-PT/CFO)n (n = 1,2) multilayered thin films have been prepared on SiO2/Si(1 0 0) substrate with LNO as buffer layer via a rf magnetron sputtering method. The structure and surface morphology of multilayered thin films were determined by X-ray diffraction (XRD) and atom force microscopy (AFM), respectively. The smooth, dense and crack-free surface shows the excellent crystal quality with root-mean-square (RMS) roughness only 2.9 nm, and average grain size of CFO thin films on the surface is about 44 nm. The influence of the thin films thickness size, periodicity n and crystallite orientation on their properties including ferroelectric, ferromagnetic properties in the (PMN-PT/CFO)n multilayered thin films were investigated. For multilayered thin films with n = 1 and n = 2, the remanent polarization Pr are 17.9 μC/cm2 and 9.9 μC/cm2; the coercivity Hc are 1044 Oe and 660 Oe, respectively. In addition, the relative mechanism are also discussed.  相似文献   

10.
Bismuth doped bismuth sodium titanate ceramics [(Bi1/2Na1/2)(1−1.5x)BixTiO3, x=0 to 0.06] were prepared, and the resulting effects on the microstructure and dielectric properties were examined. All of the Bi-doped ceramics exhibited a single phase of perovskite structure with rhombohedral symmetry. The poling leakage current was significantly reduced by the doping of Bi, facilitating the poling process of the ceramics. The doping with Bi enhances the piezoelectric properties and increases the dielectric constant and the dielectric loss of the ceramics. At 2 mol% Bi-doping level, the ceramics exhibit a large remanent polarization of 47 μC/cm2 and a relatively low coercive field of 71 kV/cm, while their d33 and kp reach a maximum value of 95 pC/N and 21%, respectively.  相似文献   

11.
0.60Bi0.90La0.10FeO3–0.40Pb(Zr0.52Ti0.48)O3 composite thin films were deposited on Pt/TiO2/SiO2/Si(100) substrates by radio-frequency sputtering and their ferroelectric and fatigue properties were mainly investigated. The composite thin films have a low dielectric loss, a high dielectric constant, and enhanced ferroelectric properties of 2P r~122.6 μC/cm2 and 2E c~479.3 kV/cm, together with a fatigue-free behavior at 200 kHz. Their fatigue behavior is strongly dependent on measurement frequencies, and the concentration of oxygen vacancies plays an important role in their fatigue behavior.  相似文献   

12.
Ba0.7Sr0.3TiO3:Eu ferroelectric films were deposited on quartz substrates by pulsed laser deposition. The linear absorption coefficient and the linear refractive index calculated from the transmission spectrum at 532 nm were found to be 1.67×104 cm?1 and 1.82 respectively. The room temperature photoluminescence shows the characteristic emission of Eu3+ ions. The nonlinear optical properties of the film were investigated by a single beam Z-scan setup. The negative nonlinear refractive index and two photon absorption coefficient was found to be ?1.508×10?6 m2/GW and 240 m/GW respectively. The real and imaginary part of the third order susceptibility of the thin films is 2.58×10?17 m2/V2 and 1.16×10?16 m2/V2 respectively. The BST:Eu thin films show good optical limiting property.  相似文献   

13.
We report the enhancement of ferroelectric properties in vanadium-doped Bi4Ti3O12 (BIT) thin films prepared by rf magnetron sputtering method for MFM and MFIS structures. The optimal sputtering parameters of the as-deposited Bi3.9Ti2.9V0.08O12 (BTV) ferroelectric films for different depositing times were obtained. Compared to the undoped BIT, vanadium doped BIT (BTV) showed better physical and electrical characteristics. The as-deposited BTV showed a remanent polarization (2P r ) of 23 μC/cm2, higher than the value of 16 μC/cm2 for BIT, as the measured frequency was 100 kHz. For BTV thin films in the MFIS structure, the leakage current density and the memory window decreased, the change ratio of capacitance critically increased as the depositing time increased from 30 to 120 min. Regarding the measured physical properties, the micro-structure and thickness of as-deposited undoped and vanadium doped BIT thin films were obtained and compared by XRD patterns and SEM images.  相似文献   

14.
溶胶-凝胶法制备Sr2Bi4Ti5O18薄膜及其铁电性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
方洪  孙慧  朱骏  毛翔宇  陈小兵 《物理学报》2006,55(6):3086-3090
采用溶胶-凝胶法,在氧气氛中和层层晶化的工艺条件下,成功地制备了沉积在Pt/Ti/SiO2/Si(100)衬底上的铁电性能优良的Sr2Bi4Ti5O18 (SBTi)薄膜,并研究了SBTi薄膜的微结构、表面形貌、铁电性能和疲劳特性.研究表明:薄膜具有单一的层状钙钛矿结构,且为随机取向;薄膜表面光滑,无裂纹,厚度约为725nm;铁电性能测试显示较饱和、方形的电滞回线,当外电场强度为275kV/cm时 关键词: 溶胶-凝胶法 铁电薄膜 2Bi4Ti5O18')" href="#">Sr2Bi4Ti5O18  相似文献   

15.
Cu2CdSnS4 (CCdTS) thin films were synthesized using chemical spray pyrolysis deposition technique. The effect of various deposition times (20, 40, 60 min) on growth of these films was investigated. The as-synthesized Cu2CdSnS4 thin films were characterized by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, Raman spectroscopy and Hall Effect measurements. The XRD pattern of Cu2CdSnS4 structured in stannite phase with preferential orientations along (112) planes. Raman spectrum revealed very strong peak at about 333 cm?1. The films have the direct optical band gaps of 1.39–1.5 eV. The optimum hole mobility was found to be 3.212 × 101 cm2 v?1 s?1 for the film deposited on 60 min. The electronic structure and optical properties of the stannite structure Cu2CdSnS4 were obtained by ab initio calculations using the Korringa–Kohn–Rostoker method combined with the Coherent Potential Approximation (CPA), as well as CPA confirms our results.  相似文献   

16.
Suh Cem Pang  Chen Lim Tay  Suk Fun Chin 《Ionics》2014,20(10):1455-1462
Starch-based gel electrolyte (SbGE) thin films were prepared by mixing native sago starch with different amounts of glycerol, and subsequently doped with various types of ionic salts. SbGE thin films showed substantially enhanced mechanical properties and ionic conductivity through incorporating optimal composition of native sago starch, glycerol, and ionic salts. A maximum room temperature ionic conductivity of the order of 10?3 S cm?1 was achieved for optimized SbGE thin film consisting of 80 wt% of native sago starch and 20 wt% of glycerol, and doped with 8 wt% of LiCl. SbGE thin films were characterized by Fourier transformed infrared spectrometry, scanning electron microscopy, and electrochemical impedance spectroscopy. Due to their favorable mechanical properties, high ionic conductivity at room temperature, ease of preparation, environmentally benign, and cheap, SbGE thin films show high potential utility as gel electrolyte materials for the fabrication of solid-state electrochemical devices.  相似文献   

17.
Al-doped ZnO (AZO) was sputtered on the surface of LiNi1/3Co1/3Mn1/3O2 (NCM) thin film electrode via radio frequency magnetron sputtering, which was demonstrated to be a useful approach to enhance electrochemical performance of thin film electrode. The structure and morphology of the prepared electrodes were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy techniques. The results clearly demonstrated that NCM thin film showed a strong (104) preferred orientation and AZO was uniformly covered on the surface of NCM electrode. After 200 cycles at 50 μA μm?1 cm?2, the NCM/AZO-60s electrode delivered highest discharge capacity (78.1 μAh μm?1 cm?2) compared with that of the NCM/AZO-120s electrode (62.4 μAh μm?1 cm?2) and the bare NCM electrode (22.3 μAh μm?1 cm?2). In addition, the rate capability of the NCM/AZO-60s electrode was superior to the NCM/AZO-120s and bare NCM electrodes. The improved electrochemical performance can be ascribed to the appropriate thickness of the AZO coating layer, which not only acted as HF scavenger to keep a stable electrode/electrolyte interface but also reduced the charge transfer resistance during cycling.  相似文献   

18.
Effects of the BiFe0.95Mn0.05O3 thickness and a SrRuO3 (SRO) buffer layer on the microstructure and electrical properties of BiFeO3/BiFe0.95Mn0.05O3 (BFO/BFMO) bilayered thin films were investigated, where BFO/BFMO bilayered thin films were fabricated on the SRO/Pt/Ti/SiO2/Si(100) substrate by a radio frequency sputtering. All thin films are of a pure perovskite structure with a mixture of (110) and (111) orientations regardless of the BFMO layer thickness. Dense microstructure is demonstrated in all thin films because of the introduction of BFMO layers. The SRO buffer layer can also further improve the ferroelectric properties of BFO/BFMO bilayered thin films as compared with those of these thin films without a SRO buffer layer. The BFO/BFMO bilayered thin film with a thickness ratio of 220/120 has an enhanced ferroelectric behavior of 2P r??165.23???C/cm2 and 2E c??518.56?kV/cm, together with a good fatigue endurance. Therefore, it is an effective way to enhance the ferroelectric and fatigue properties of bismuth ferrite thin films by constructing such a bilayered structure and using a SRO buffer layer.  相似文献   

19.
We have prepared a series of (PLZT)x(BiFeO3)1−x transparent thin films with thickness of 300 nm by a thermal pyrolysis method. Only films with x≦0.10 formed a single phase of perovskite structure. The film where x=0.10 exhibited both ferromagnetic and ferroelectric properties at room temperature with spontaneous magnetization and coercive magnetic fields of 0.0027μB and 5500 G, respectively. The remanent electric polarization and coercive electric field for the film where x=0.10 were 3.0 μC/cm2 and 24 kV/cm, respectively. Additionally, films with 0.02≦x≦0.10 showed both magneto-optical effects and the second harmonic generation of transmitted light.  相似文献   

20.
CoFe2O4 thin films with preferential texture structure, small grain size, and perpendicular magnetic anisotropy can be obtained by the pulsed laser deposition (PLD) technique. In this work, we studied the influence of the Fe3+ ions substitution by three elements from lanthanide group (Dy, La, and Gd) on the structural properties of the thin films. The samples were deposited by Nd:YAG laser (λ=532 nm, 10 ns) ablation of CoFe1.8RE0.2O4, (RE=Dy, La, Gd) targets at various substrate temperatures ranging from room temperature to 600 °C. The microstructure and chemical composition of the thin films were investigated by Raman spectroscopy, XRD, SEM-EDS, and ToF-SIMS. The XRD patterns and Raman spectra of the thin films indicated the formation of a single spinel structure. Thus, the desired substitution of the iron ions in the spinel lattice with the RE elements was achieved in the thin films, although in the bulk material, their presence determined the formation of a residual phase with a perovskite-type structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号