首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleosides and Nucleotides. Part 16. The Behaviour of 1-(2′-Deoxy-β-D -ribofuranosyl)-2(1H)-pyrimidinone-5′-triphosphate, 1-(2′-Deoxy-β-D -ribofuranosyl-2(1H))-pyridinone-5′-triphosphate and 4-Amino-1-(2′-desoxy-β-D -ribofuranosyl)-2(1H)-pyridinone-5′-triphosphate towards DNA Polymerase The behaviour of nucleotide base analogs in the DNA synthesis in vitro was studied. The investigated nucleoside-5′-triphosphates 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone-5′-triphosphate (pppMd), 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppIId) and 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppZd) can be considered to be analogs of 2′-deoxy-cytidine-5′-triphosphate. However, their ability to undergo base pairing to the complementary guanine is decreased. When pppMd, pppIId or pppZd are substituted for pppCd in the enzymatic synthesis of DNA by DNA polymerase no incorporation of these analogs is observed. They exhibit only a weak inhibition of the DNA synthesis. The mode of the inhibition is uncompetitive which shows that these nucleotide analogs cannot serve as substrates for the DNA polymerase.  相似文献   

2.
Two new complexes, trans-[MnL2(NCS)2] (1) and trans-[CoL2(H2O)(EtOH)](ClO4)2?·?H2O (2) with asymmetrical triaryltriazole ligands [L?=?3-(p-chlorophenyl)-4-(p-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole], have been synthesized and characterized by elemental analysis, FT-IR, ESI-MS, and single-crystal X-ray diffraction. In the complexes each L adopts a chelating bidentate mode via the nitrogen of pyridyl and triazole. Both complexes have a similar distorted octahedral core with two NCS? ions in the trans position in 1, while one H2O and one EtOH are present in the axial sites in 2.  相似文献   

3.
The dinucleoside phosphate ΠdpΠd ( 4 ) was synthesized from the monomers 1-(5′-O-monomethoxytrityl - 2′ - deoxy - β - D - ribofuranosyl) - 2 (1 H) - pyridone ((MeOTr) Πd, 2 ) and 1-(5′-O-phosphoryl-3′-O-acetyl-2′-deoxy-β-D -ribofuranosyl)-(1H)-pyridone (pΠd(Ac), 3 ). Its 6.4% hyperchromicity and an analysis of the 1H-NMR. spectra indicate that the conformation and the base-base interactions in 4 are similar to those in natural pyrimidine dinucleoside phosphates.  相似文献   

4.
(±-(2E,4E)-2,7-Dimethylocta-2,4-dienedioic acid ( 1 ) was synthesized efficiently from furan, employing a rhodium-carbenoid-induced furan-ring-unravelling reaction followed by an unusual NaBH4/CeCl3⋅7 H2O reduction, Wittig-Horner olefination, and diester hydrolysis.  相似文献   

5.
Two new palladium(II) complexes with 5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione(mpyh) were synthesized: cis-[Pd(mpyh)2Cl2]·H2O and cis-[Pd(mpyh)2Br2]·2H2O. The molecular formulae of the complexes were confirmed by elemental analysis, IR, 1H NMR spectra and DTA study. The ligand is coordinated to the palladium ion with N-atom of the pyridine ring. The spectroscopic data indicate a square planar geometry with two N-pyridine atoms and two halogene anions in cis position. The final product of the thermal decomposition of cis-[Pd(mpyh)2Cl2]·H2O is metallic Pd, whereas for cis-[Pd(mpyh)2Br2]·2H2O the residue consists of metallic Pd and C. The cytotoxic effects of the complexes were examined in vitro on some human tumor cell lines. The cis-[Pd(mpyh)2Cl2]·H2O proved to be more active as compared to the cis-[Pd(mpyh)2Br2]·2H2O.  相似文献   

6.
2-(2-Hydroxy-5-methylphenyl)-1H-benzimidazole ligand (HL) and its complexes with Cu(NO3)2, Zn(NO3)2 have been synthesized and characterized. The structures of the compounds were confirmed on the basis of elemental analysis, molar conductivity, magnetic moment, FT-IR, 1H- and 13C NMR. Cu(II) complex has 1: 2 metal: ligand ratio, while Zn(II) complex is 1: 1. Crystal structure of 2-(2-hydroxy-5-methylphenyl)-1H-benzimidazolium chloride (HL · HC1) was determined by single-crystal X-ray diffraction. It crystallizes in the orthorombic, space group P212121and Z = 4.  相似文献   

7.
Palladium(II) complex with 6-(2-hydroxy-5-methylphenyl)-3-(pyridin-2-yl)-1,2,4-triazin-5(2H)-one was synthesized for the first time. The ligand was prepared from 3-(pyridin-2-yl)-1,2,4-triazin-5(2H)-one and 4-methylphenol via nucleophilic substitution of hydrogen (SNH reaction). The complex was readily soluble in basic medium, and it effectively catalyzed Mizoroki-Heck reaction.  相似文献   

8.
Summary The use of ethyl oxamate for the synthesis of inorganic oxamato complexes is reported. A reaction system leading to the preparation of the novel polymeric -oxamato(-2) complexes [M(oxm)(H2O)2] x (M=Cu, Zn, Cd), [Co(oxm)(H2O)2] x ·0.5xH2O and [Ni(oxm)(H2O)2] x ·xH2O is described (H2 oxm = oxamic acid). Ethyl oxamate can also be used for the preparation of monomeric oxamato(-1) complexes.
Der Einsatz von Ethyloxamat für die Synthese von Oxamato(-1) und neuen -Oxamato(-2)-Komplexen (Kurze Mitt.)
Zusammenfassung Es wird der Einsatz von Ethyloxamat für die Synthese von anorganischen Oxamato-Komplexen beschrieben. Ein Reaktions-System für die Herstellung von neuen -Oxamato(-2)-Komplexpolymeren: [M(oxm)(H2O)2] x ; (M = Cu, Zn, Cd), [Co(oxm)(H2O)2] x ·0.5xH2O und [Ni(oxm)(H2O)2] x ·xH2O, wird vorgestellt. Ethyloxamat kann auch für die Herstellung von monomeren Oxamato(-1)-Komplexen verwendet werden.
  相似文献   

9.
Nucleosides and Nucleotides. Part 10. Synthesis of Thymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D - ribofuranosyl)-2(1 H)-pyridone The synthesis of 5′-O-monomethoxytritylthymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D -ribofuranosyl)-2(1H)-pyridone ((MeOTr)TdpTdp∏d, 5 ) and of thymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridone (TdpTdp∏d, 11 ) by condensing (MeOTr) TdpTd ( 3 ) and p∏d(Ac) ( 4 ) in the presence of DCC in abs. pyridine is described. Condensation of (MeOTr) TdpTdp ( 6 ) with Πd(Ac) ( 7 ) did not yield the desired product 5 because compound 6 formed the 3′-pyrophosphate. The removal of the acetyl- and p-methoxytrityl protecting group was effected by treatment with conc. ammonia solution at room temperature, and acetic acid/pyridine 7 : 3 at 100°, respectively. Enzymatic degradation of the trinucleoside diphosphate 11 with phosphodiesterase I and II yielded Td, pTd and p∏d, Tdp and Πd, respectively, in correct ratios.  相似文献   

10.
Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride ( 1 , C17H26NO+·Cl?, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride ( 2 ; C16H24NO+·Cl?, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride ( 3 ; C13H20NO+·Cl?, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1 – 3 .  相似文献   

11.
1,2-Diphosphaferrocenes as Ligands in Transition Metal Complexes. X-Ray Structure Analysis of [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}] Reaction of metallo-1,2-diphosphapropene (η5-tBuC5H4)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 with (Z-cyclooctene)Cr(CO)5 afforded the pentacarbonylchromium adduct of a 1,2-diphosphaferrocene [(η5-tBuC5C5H4){η5-1-[Cr(CO)5]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 1 c ). Diphosphaferrocene [(η5-tBuC5H4){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 c ) was formed when (η5-tBuC5H4)(CO)2FeBr was treated with (Me3Si)2P? P?C(SiMe3)2 in toluene at 60°C. Photolysis of molybdenum- and tungsten hexacarbonyl in the presence of [(η5-1,3-tBu2C5H3){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 b ) gave the pentacarbonylmetal adducts 8 (M = Mo) and 9 (M = W), respectively. A corresponding manganese derivative resulted from the photochemical reaction of 2 b and (MeC5H4)Mn(CO)3. Treatment of 2 b with Co2(CO)8 yielded trinuclear [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 11 ). Constitution and configuration of compounds 1 c, 2 c, 8 – 11 were determined by elemental analyses and spectra (IR, 1H-, 13C-, 31P-NMR, MS). In addition the molecular structure of 11 was established by single crystal X-ray analysis.  相似文献   

12.
N-(2,2,2-Trichloroethylidene)-, N-(2,2-dichloro-2-phenylethylidene)-, and N-(1-hydroxy-2-polychloroethyl) arenesulfonamides reacted with adamantane in carbon tetrachloride in the presence of oleum or concd. H2SO4-P4O10 mixture to give the corresponding N-(2-polychloroethyl)arenesulfonamides as a result of reduc-tion of the azomethine and OH group, respectively.  相似文献   

13.
Synthesis of 4-(Benzylthio)-and 4-(Arylthio)-1,3-oxazole-5(2H)-ones Following a known procedure, 4-(benzylthio)-1,3-oxazol-5(2H)-one ( 4a ) was synthesized starting from sodium cyanodithioformate ( 1 ) and cyclohexanone (Scheme 1). The structure of the intermediate 4-(benzylthio)-1,3-thiazol-5(2H)-one ( 3a ) was established by X-ray crystallography. An alternative route was developed for the synthesis of 4-(arylthio)-1,3-oxazol-5(2H)-ones which are not accessible by the former reaction. Treatment of ethyl cyanoformate ( 5 ) with a thiophenol in the presence of catalytic amounts of Et2NH and TiCl4, followed by addition of a ketone and BF3.Et2O in a one-pot-reaction, gave 4f–i in low-to-fair yields (Scheme 3). Both synthetic pathways-complementary as for benzyl–S and aryl-S derivatives–seem to be limited with respect to variation of substituents of the ketone.  相似文献   

14.
Thia- and Selena-arachno-undecaborane 6,7-μ-(CH3E)B10H13. Crystal Structure of arachno-6,7-μ-(CH3Se)B10H13. Theoretical Investigations of the Molecular Structures and 11B NMR Shifts of arachno-6,7-μ-(CH3E)B10H13 The reaction of B10H14 with (CH3)2S yields with loss of H2 the base adduct 6,9-[(CH3)2S]2B10H12. Although an analogous reaction between B10H14 with disulfanes or diselenanes was expected to produce 6,9 bridged dichalcogen derivatives, (CH3)2S2 failed to react even under reflux conditions. Trisulfane (CH3)2S3 does react, but the pathway is different and leads to (CH3S)B10H13 2 without loss of H2. Unlike of (CH3)2S2, (CH3)2Se2 yields (CH3Se)B10H13, 3 . Both 2 and 3 are formed by substitution of a bridging hydrogen and could be obtained in pure form and characterized 11B NMR spectroscopically. A single crystal X-ray structure analysis also was performed on 3 (space group P21/c). The molecular structures of 2 and 3 were optimized at the MP2 level and 11B NMR shifts were computed at the IGLO-SCF, GIAO-SCF and GIAO-B3LYP levels of theory.  相似文献   

15.
The reaction of 6-(cyclopent-1-enyl)-N-ethoxycarbonyl-2-methylaniline with Br2 or its reaction with NH3 followed by the reaction with Br2 afforded 2"-bromo-8-methylspiro(4H-3,1-benzooxazine-4,1"-cyclopentan)-2(1H)-one and 2-amino-2"-bromo-8-methylspiro(4H-3,1-benzooxazine-4,1"-cyclopentane), respectively.  相似文献   

16.
Chlorodiphenylphosphine and 2,2′-biphenylylenephosphorochloridite react with 2-hydroxy-2′-(1,4-bisoxo-6-hexanol)-1,1′-biphenyl to yield the new α,ω-bis(phosphorus-donor)-polyether ligands, 2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2 (1) and 2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8) (2). These ligands react with Mo(CO)4(nbd) to form the monomeric metallacrown ethers, cis-Mo(CO)4{2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2} (cis-3) and cis-Mo(CO)4{2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8)} (cis-4), in good yields. The X-ray crystal structures of cis-3 and cis-4 are significantly different, especially in the conformation of the metal center and the adjacent ethylene group. The very different 13C-NMR coordination chemical shifts of this ethylene group in cis-3 and cis-4 suggest that the solution conformations of these metallacrown ethers are also quite different. Both metallacrown ethers undergo cistrans isomerization in the presence of HgCl2. Although the cistrans equilibrium constants for the isomerization reactions are nearly identical, the isomerization of cis-3 is more rapid. Phenyl lithium reacts with cis-3 to form the corresponding benzoyl complexes but does not react with either trans-3 or cis-4. Both the slower rate of cistrans isomerization of cis-4 and its lack of reaction with PhLi are consistent with weaker interactions between the hard metal cations and the carbonyl oxygens in both trans-3 and cis-4.  相似文献   

17.
Copper(II) complexes of the ligands N2-[(R)-2-hydroxypropyl]- and N2-[(S)-2-hydroxypropyl]-(S)-phenylalaninamide performed chiral separation of N-dansyl-protected and unmodified amino acids in HPLC (reversed phase). With the aim of investigating which species are potentially involved in the discrimination mechanism, the two ligands were synthesized and their complexation equilibria with Cu2+ studied by potentiometry and spectrophotometry in aqueous solution up to pH 11.7. The formation constants of the species observed, [CuL]2+, [CuL2]2+, [CuLH–1]+, [CuL2H–1]+, [CuL2H–2], and [CuL2H–3]?, were quite similar for both compounds and were compared to those of (S)-phenylalaninamide. Most probably, in [CuL2H–3]? the ligands behave as terdentate, with the deprotonated OH group occupying an apical position.  相似文献   

18.
The mass spectra of previously unknown 1-alkyl(cycloalkyl, aryl)-3-alkoxy(aryl)-2-methylsulfanyl-1H-pyrroles were studied. Fragmentation of all 3-alkoxy-substituted pyrroles under electron impact (70 eV) follow both ether and sulfide decomposition paths; In particular, 1-R-substituted 3-methoxy-2-methylsulfanyl-1H-pyrroles (R = Me, Et, i-Pr, s-Bu, cyclo-C5H9, cyclo-C6H11, Ph) lose methyl radical group from both methoxy and methylsulfanyl groups. The mass spectra of 1-sec-butyl- and 1-cycloalkylpyrroles also contained a strong peak (10–49%) from odd-electron [M — C n H2n ] ion formed via cleavage of the N-R bond with synchronous hydrogen transfer. Cleavage of the O-Alk bond in the fragmentation of 3-alkoxy-1-isopropyl-2-methylsulfanyl-1H-pyrroles (Alk = Et, i-Pr, t-Bu) was accompanied by rearrangement process leading to the corresponding alkene and odd-electron 1-isopropyl-2-methylsulfanyl-1H-pyrrol-3-ol ion. The main fragmentation path of 1-alkyl-2-methylsulfanyl-3-phenyl-1H-pyrroles (Alk = Me, i-Pr) under electron impact involves dissociation of the S-Me bond with formation of rearrangement 1H-[1]benzothieno[2,3-b]pyrrol-8-ium ion.  相似文献   

19.
A new series of hexacoordinate cobalt(II), nickel(II) and copper(II) complexes of 5-(2-carboxyphenylazo)-2-thiohydantoin HL having formulae [LM(OAc)(H2O)2] · nH2O (M = CoII, CuII and NiII), [LMCl(H2O)2] · nH2O (M = CoII and NiII), [LCuCl(H2O)]2 · 2H2O, [LCu(H2O)3](ClO4) and [LCu(HSO4)(H2O)2] were isolated and characterized by elemental analyses, molar conductivities and magnetic susceptibilities, and by i.r., electronic and e.s.r. spectral measurements, as well as by thermal (t.g. and d.t.g.) analyses. The i.r. spectra indicate that the ligand HL behaves as a monobasic tridentate towards the three divalent metal ions via an azo-N, carboxylate-O and thiohydantoin-O atom. The magnetic moments and electronic spectral data suggest an octahedral geometry for CoII complexes, distorted octahedral geometry for both NiII and CuII complexes with a dimeric structure for [LCuCl(H2O)]2 · 2H2O through bridged chloro ligands. The X-band e.s.r. spectra reveal an axial symmetry for the copper(II) complexes with unsymmetrical Ms = ± 1 signal and G-parameter less than four for the dimeric [LCuCl(H2O)]2 · 2H2O. The thermogravimetry (t.g. and d.t.g.) of some complexes were studied; the order and kinetic parameters of their thermal degradation were determined by applying Coats–Redfern method and discussed.  相似文献   

20.
A new ligand, 3-methyl-4-(p-bromophenyl)-5-(2-pyridyl)-1,2,4-triazole (L) and its complexes, trans-[CuL2(ClO4)2] (1) and cis-[CoL2(H2O)2](ClO4)2·H2O·CH3OH (2), have been synthesized and characterized by UV, IR, electrospray ionization mass spectrum, elemental analyses, and single-crystal X-ray diffraction methods. In the structure, two L ligands are stabilized by intermolecular π···π interactions between the triazole rings. In the complexes, each L ligand adopts a chelating bidentate mode through N atom of pyridyl group and one N atom of the triazole. Both complexes have a similar distorted octahedral [MN4O2] core (M = Cu2+ and Co2+) with two ClO4 ions in the trans position in 1 but two H2O molecules in the cis arrangement in 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号