首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of M-free and M-loaded 10YO1.5–10CeO2–80ZrO2 solid solution (M = Cu, V, or W) towards carbon black combustion was studied using TG/DTA and TPO techniques. It was demonstrated that all studied catalysts lower the temperature of carbon black combustion. The selectivity of the catalytic reaction in CO2 formation was 100%. It was evidenced that the fast oxidation of carbon at lower temperatures, observed only in the TG/DTA apparatus, was due to heat- and mass-transfer limitations, resulting in a runaway reaction. Using TPR technique, it was shown that, in the temperature range of DTA curve, oxygen on the catalyst surface was rather reactive (and, therefore, it could be easily released by support for the oxidation of carbon), whereas the reactivity of bulk oxygen was negligible. The activity of the metal-loaded 10YO1.5–10CeO2–80ZrO2 (Y-10) samples varied according to the following sequence: Cu/Y-10 > V/Y-10 > W/Y-10. For Cu- and V-containing catalysts, a contribution of a surface redox mechanism in reaction was proposed by comparing EPR spectra of pure catalysts with those of the samples (catalysts mixed with carbon black) after catalysis.  相似文献   

2.
The progress in the field of methane conversion into higher hydrocarbons including aromatics and oxygenated compounds in the recent five years will be reviewed shortly, together with a new type of the methane conversion reaction with carbon monoxide at lower temperatures (600–700 K) by supported group VIII metal catalysts. Benzene was formed selectively among hydrocarbons in the CH4–CO reaction over silica-supported Rh, Ru, Pd and Os catalysts under atmospheric pressure. Both CH4 and CO were required for benzene formation, and only ethane and ethylene were formed besides benzene. The amount of C3–C5 hydrocarbons was negligible, which suggests that a completely different mechanism from the CO–H2 reaction may be operating over these catalysts despite of the similarity in the reaction conditions with the CO–H2 reaction. The mechanism of benzene formation was studied deeply by means of kinetical investigation as well as infrared spectroscopy and isotopic tracer method in connection with that of CO hydrogenation.  相似文献   

3.
It is shown that in the presence of reducing agents — light alkanes (C3–C4) or carbon monoxide — the temperature for the elimination of nitrogen(I) oxide over iron-containing zeolite catalysts of various structural types (Y, M, pentasil) is reduced by 70–150 °C. In the presence of excess oxygen (SCR process conditions) a greater conversion of N2O(90–94%) is achieved at even lower temperatures (up to 50–150 °C less) with the use of hydrocarbons, and the activity of the catalysts correlates with the presence of strongly acidic B centers on their surfaces.__________Translated from Teoreticheskaya i Éksperimentalnaya Khimiya, Vol. 41, No. 1, pp. 35–39, January–February, 2005.  相似文献   

4.
The gas-phase microcatalytic conversion of anisole in the presence of methanol (methanol/anisole molar ratio=4) was studied at temperatures ranging from 523 to 673 K over anion treated (1–3 wt.% F or SO 4 2– ) AlPO4–Al2O3 (25 wt.% Al2O3) catalysts. Anisole conversion gave a mixture of dealkylated and C-alkylated products (C-alkylation preferentially in ortho-position) where dealkylation always predominates. The influences of the reaction temperature and both anion type and anion loading upon the conversion of anisole and the selectivities of the products were investigated. The higher increase in surface acidity by fluoride loading increases both the C-alkylation selectivity (mainly to 2-methylanisole) and dealkylation to phenol; so that a lower anisole conversion (smaller pseudokinetic constant) and higher methylanisoles selectivity is found for APAI-P-F catalysts related to unmodified one.  相似文献   

5.
Methane oxidation by an excess of N2O on the catalytic sites formed in HZSM-5 zeolite, silicalite, and SiO2 after modification with iron, silver, and gadolinium cations in different combinations is studied. Introduction of iron and silver ions into H[Al]ZSM-5 zeolite is shown to result in the formation of the sites that are active in methane oxidation, while the systems obtained on the basis of crystalline silicalite or amorphous SiO2 demonstrate poor or no catalytic activity, respectively. Complete oxidation of methane with 100% conversion is observed on the Fe/HZSM-5 and Ag/HZSM-5 catalysts at temperatures higher than 350 and 450°C, respectively. A decrease in the reaction temperature and in the methane conversion is accompanied by coking of the catalysts and, in the case of Fe/HZSM-5, by the appearance of trace amounts of methanol and formic acid in the gas phase. The temperature dependence of the activity and selectivity for the Ag/HZSM-5 and (Ag + Gd)/HZSM-5 catalysts exhibits a pronounced hysteresis at 330–480°C, and the formation of coke proceeds much faster than in the case of iron-containing samples. Catalytic properties of (Fe + Ag)/HZSM-5 are similar to those of Fe/HZSM-5. The introduction of Gd does not influence significantly the activity and selectivity of the catalysts. ESR and TG–DTA were used to determine the state and distribution of Fe, Ag, and Gd in the samples and to examine the processes of coke formation.  相似文献   

6.
    
The modification of CrPO4-A catalyst with AlPO4 leads to CrPO4–AlPO4 (CrAlP-A) catalysts exhibiting not only an increased total acidity but also an increased number of strongest Lewis acid sites as compared to CrPO4 and AlPO4 catalysts. Besides, surface acidity is slightly influenced by AlPO4 loading (5–50 wt.%). This increased surface Lewis acidity is responsible for the improved catalytic activity in cyclohexene skeletal isomerization and cumene dehydrogenation processes. Moreover, the catalytic activity results can be well interpreted through differences in the number and strength of acid sites, measured gas-chromatographically, in terms of pyridine and 2,6-dimethylpyridine chemisorbed at different temperatures (573–673 K).  相似文献   

7.
Summary The kinetics of the reduction of nitric oxide with pure and potassium-doped carbon, NO+C=1/2 N2+CO, were investigated. For the reaction of NO with pure carbon, measurements were made in the temperature range from 1750 K to 2130 K and at initial NO pressures between 5×10–3 Pa and 7×10–2 Pa. The reaction was first order with respect to nitric oxide at NO pressures below 3×10–2 Pa. The activation energy was 54 kJ/mol for temperatures below 2000 K, while at higher temperatures a second (parallel) reaction became noticeable with a definitely higher activation energy. Potassium-doped carbon was prepared by a molecular beam technique. AES studies verified that potassium was intercalated into the graphite surface and that the potassium-to-carbon ratio changed continuously with sample temperature. The reduction of NO with K-doped carbon was investigated in the temperature range from 710 K to 1080 K and at initial NO pressures between 7×10–5 Pa and 6×10–4 Pa while monitoring, in-situ using AES the K/C-ratio of the surface. The NO reduction rate rose linearly with K/C. Compared to pure carbon, the reaction rate for the NO reduction with K-doped carbon increased by a factor in the range of 104. The activation energy for the NO reduction with K-doped carbon was found to be 82 kJ/mol.  相似文献   

8.
Various CuO/SiO2 catalysts were prepared and characterized by XRD, surface area and metal area measurements. While dehydrogenation activity for cyclohexanol was observed at 473–573 K on reduced catalysts, it was observed only at 573 K on the unreduced catalyst.IICT Communication No: 3261  相似文献   

9.
In a study of the oxidation of o-xylene on carbons (in the range of 523–573°K) under nonstationary conditions, it was found that considerable amounts of the reaction products (phthalic anhydride and CO2) are adsorbed on the surface of the catalysts (phthalic anhydride more strongly than CO2). The adsorption of the products is chemical in nature, like the adsorption of initial o-xylene. The bond between the adsorbates and the surface weakens with increase in the number of acidic groups on the surface. Since the active carbons are characterized by a higher basicity than the oxidized ones, in the first case the oxidation products of o-xylene are adsorbed more strongly and desorbed more slowly.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 22, No. 4, pp. 499–503, July–August, 1986.  相似文献   

10.
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo5+, Mo4+, S2− and S2−2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475–0.525 exhibited optimal catalytic activity for the reaction.  相似文献   

11.
The conversion of anisole in the presence of methanol (anisole/methanol molar ratio=4) over AlPO4–Al2O3 (5–15 wt.% Al2O3) catalysts gave a mixture of dealkylated and C-alkylated products (C-alkylation preferentially inortho-position) in which dealkylation to phenol always predominated. The catalytic activity, which increased with alumina content and decreased on increasing the calcination temperature from 773 to 1073 K, was fairly well related to the change in surface acidic characteristics. Furthermore, anisole conversion followed the requirements of the Bassett-Habgood kinetic treatment for first order processes, with a single common interaction mechanism and, consequently, a common transition state for all catalysts. Poisoning by pyridine and 2,6-dimethylpyridine confirmed that anisole conversion occurs on acid sites.  相似文献   

12.
Uniformly dispersed Co/SiO2 catalysts (10–60 wt% on metal basis) were prepared by the sol-gel method, and used for the Fischer-Tropsch (F-T) synthesis in slurry phase at 503 K and 1 MPa in a flow of synthesis gas (H2/CO = 2/1, W/F = 10 g-catal·h/mol). The catalysts were characterized by temperature-programmed reduction (TPR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and chemisorption. Although CO conversion over the unpromoted catalysts prepared by the sol-gel method was lower than the conventional catalysts prepared by impregnation, the catalytic activity of the former catalysts was more stable than the latter catalysts. The conversion was improved drastically, when 0.01–1 wt% of Ir or Ru (on metal basis) was added to the catalysts prepared by the sol-gel method. The TPR and XPS spectra and the H2 chemisorption revealed that the noble metal addition was responsible for the reduction of Co particles in the catalysts. It is supposed that the durability of the promoted catalysts prepared by the sol-gel method was ascribed to the high dispersion of Co particles stabilized on the catalyst surface.  相似文献   

13.
Hydrogenation of ethene has been studied at 185–230 K on a Rh/TiO2 catalyst reduced at 473–773 K. The activity decreases on increasing the reduction temperature, even at 500 K, but it is more evident when reduction is carried out at 773 K. Oxidation and reduction recovers the activity in hydrogenation.  相似文献   

14.
The phase equilibrium CO2(g)=CO2(aq) and the aqueous reactions CO 3 2– +H+=HCO 3 , HCO 3 +H+=CO2(aq)+H2O, and Na++CO 3 2– =NaCO 3 were studied from 225 to 325°C using a flow calorimetric technique. Heats of mixing of gaseous CO2 with liquid H2O and with aqueous NaOH solutions were measured at these temperatures. Log K, H, S, and Cp values were determined for these reactions from the heat of mixing data. Equations for these thermodynamic quantities valid at infinite dilution (I=0) and 12.4 MPa are given as a function of temperature from 225 to 325°C. The log K and H values agree well with literature values at these temperatures for the first and third reactions, but not for the second reaction. No previous results have been reported for the fourth reaction at high temperatures. The isocoulombic reaction principle is tested using the log K values determined in this study. This principle is found to be valid for the reactions where each charge on one side of the equation is balanced on the other side by a charge of the same sign and magnitude, but not for the reaction where two single negative charges (HCO 3 and OH) are balanced by one double negative charge (CO 3 2– ).Presented at the Second International Symposium on Chemistry in High Temperature Water, Provo, UT, August 1991.Taken in part from the Ph.D. Dissertation of X. Chen, Brigham Young University, 1991.  相似文献   

15.
杨勇  王仰东  刘苏  宋庆英  谢在库  高滋 《催化学报》2007,28(12):1028-1030
采用超声法在非水溶剂介质中制备了稀土金属La盐等促进的硫化钼基催化剂,考察了其CO加氢选择性合成乙醇等低碳混合醇的催化性能.在3.0MPa,330℃和H2/CO(体积比)=2.0的反应条件下,La促进的催化剂表现出较Mo-Co-K硫化物基催化剂更高的催化活性,CO转化率和产物中乙醇的分布可分别达到17.2%和53.4%.扫描电镜、透射电镜、X射线衍射和光电子能谱等表征结果表明,稀土金属La盐的加入改善了Mo-Co-K硫化物基催化剂的外观形貌和电子结构,对提高催化活性和乙醇的分布起到重要的作用.  相似文献   

16.
Oxide vanadium–titanium catalysts modified by phosphorus additives (20V2O5–(80 –n)TiO2nP2O5, n = 1, 3, 5, 10, and 15 wt %) are studied in methylpyrazine ammoxidation. Two regions of compositions are found corresponding to radically different catalytic properties, namely, catalysts with a low (5 wt % P2O5) and high (10 wt % P2O5) concentration of the additive. In the first case, the introduction of phosphorus is accompanied by a gradual increase in the activity. In the second case, an increase in the additive concentration results in a decrease in the activity and selectivity to the target product, pyrazineamide, and a simultaneous increase in the selectivities to by-products, pyrazine and carbon oxides. The catalysts are characterized by X-ray diffraction analysis, differential dissolution, IR, and NMR spectroscopic data. As in the binary system, the active sites of the samples with a low concentration of phosphorus contain V5+ cations in a strongly distorted octahedral oxygen environment, which are strongly bound to a support due to the formation of V–O–Ti bonds. The catalytic properties of the samples containing 10 wt % P2O5 are due to the presence of the phase of a triple V–P–Ti compound with an atomic ratio V : P : Ti approximately equal to 1 : 1 : 1. The V5+ cations in this compound occur in a weakly distorted tetrahedral oxygen environment and are bound to the tetrahedral P5+ cations.  相似文献   

17.
The catalytic activity of structurally different Cu- and Ni-containing polymetalorganosiloxanes supported on silica was studied using the reaction of C–Cl bond metathesis in the carbon tetrachloride–saturated hydrocarbon (n-decane) system as an example. Catalysts with low metal contents were found to exhibit the highest activity; an increase in the metal content resulted in a decrease in both conversion and specific activity. At the initial portions of kinetic curves, the reaction was described by first-order rate equations with respect to n-decane; the reaction was of fraction order with respect to CCl4and catalyst. The activation energy of the process in the n-decane–carbon tetrachloride system on a copper-containing network catalyst was 23 ± 2 kcal/mol. The mechanism of catalysis on immobilized catalysts from the above class is discussed.  相似文献   

18.
The influence of bismuth addition on the activity and selectivity of palladium catalysts supported on SiO2 in the reaction of glucose oxidation to gluconic acid was studied. The catalysts modified with Bi show much better selectivity and activity than palladium catalysts. The XRD studies proved the presence of intermetallic compounds BiPd and Bi2Pd, which probably increase activity and selectivity of PdBi/SiO2 catalysts in the oxidation of glucose. The TPO studies of catalysts containing 5 wt.% Pd/SiO2, 3 wt.% Bi/SiO2 and 5 wt.% Pd–5 wt.% Bi/SiO2 show that palladium oxidation occurs at much higher temperatures than in the case of bismuth. The maximum rate of Pd oxidation occurs at around 580 K while the maximum rate of Bi oxidation takes place at around 430 K. Considering the above facts, a reaction involving bimetallic catalysts in oxidizing atmosphere at 333 K should not lead to surface oxidation of palladium and thus their deactivation.  相似文献   

19.
The effect of temperature in multiple oxidative–reductive treatments on the activity of cobalt–silica gel catalysts in the complete oxidation of methane is studied. A decrease in the temperature of oxidative–reductive treatments from 500°C to 300°C results in an irreversible decrease in the activity of samples prepared by the impregnation of SiO2with cobalt nitrate. A sample prepared from cobalt acetate and calcined at 500°C shows a lower activity, which was close to the activity of samples prepared from nitrates and calcined at 300°C.  相似文献   

20.
(n)MnOx–(1–n)CeO2 binary oxides have been studied for the sorptive NO removal and subsequent reduction of NOx sorbed to N2 at low temperatures (150 °C). The solid solution with a fluorite-type structure was found to be effective for oxidative NO adsorption, which yielded nitrate (NO 3) and/or nitrite (NO 2) species on the surface depending on temperature, O2 concentration in the gas feed, and composition of the binary oxide (n). A surface reaction model was derived on the basis of XPS, TPD, and DRIFTS analyses. Redox of Mn accompanied by simultaneous oxygen equilibration between the surface and the gas phase promoted the oxidative NO adsorption. The reactivity of the adsorbed NOx toward H2 was examined for MnOx–CeO2 impregnated with Pd, which is known as a nonselective catalyst toward NO–H2 reaction in the presence of excess oxygen. The Pd/MnOx–CeO2 catalyst after saturated by the NO uptake could be regenerated by micropulse injections of H2 at 150 °C. Evidence was presented to show that the role of Pd is to generate reactive hydrogen atoms, which spillover onto the MnOx–CeO2 surface and reduce nitrite/nitrate adsorbing thereon. Because of the lower reducibility of nitrate and the competitive H2–O2 combustion, H2–NO reaction was suppressed to a certain extent in the presence of O2. Nevertheless, Pd/MnOx–CeO2 attained 65% NO-conversion in a steady stream of 0.08% NO, 2% H2, and 6% O2 in He at as low as 150 °C, compared to ca. 30% conversion for Pd/–Al2O3 at the same temperature. The combination of NOx-sorbing materials and H2-activation catalysts is expected to pave the way to development of novel NOx-sorbing catalysts for selective deNOx at very low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号