首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perfluorocarbon thin films and polymer brushes were formed on stainless steel 316 L (SS316L) to control the surface properties of the metal oxide. Substrates modified with the films were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), contact angle analysis, atomic force microscopy (AFM), and cyclic voltammetry (CV). Perfluorooctadecanoic acid (PFOA) was used to form thin films by self-assembly on the surface of SS316L. Polypentafluorostyrene (PFS) polymer brushes were formed by surface-initiated polymerization using SAMs of 16-phosphonohexadecanoic acid (COOH-PA) as the base. PFOA and PFS were effective in significantly reducing the surface energy and thus the interfacial wetting properties of SS316L. The SS316L control exhibited a surface energy of 38 mN/m compared to PFOA and PFS modifications, which had surface energies of 22 and 24 mN/m, respectively. PFOA thin films were more effective in reducing the surface energy of the SS316L compared to PFS polymer brushes. This is attributed to the ordered PFOA film presenting aligned CF(3) terminal groups. However, PFS polymer brushes were more effective in providing corrosion protection. These low-energy surfaces could be used to provide a hydrophobic barrier that inhibits the corrosion of the SS316L metal oxide surface.  相似文献   

2.
Characterization of self-assembled monolayers of thiols on Au(111)   总被引:1,自引:0,他引:1  
Self-assembled monolayers (SAMs) of n-butanethiol, n-dodecanethiol and their equimolar mixture on Au(111) were prepared and characterized by ellipsometry, contact angle measurement, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results revealed that these SAMs are oriented ultrathin films with the thickness of nanometer scale, and the SAMs were influenced by the molecular chain length, the lattice orientation and cleanliness of the substrates. The surface of the longer chain SAM is hydrophobic. The thicknesses of three SAMs of n-butanethiol, n-dodecanethiol and their mixture revealed by ellipsometry and XPS are about 0.59 - 0.67nm, 1.60- 1.69 nm and 1.23 - 1.32nm, respectively. AFM images further demonstrated that the SAM formed by the mixture has some microdomains with two different thicknesses.  相似文献   

3.

A capacitive sensor based on S-{12-[1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl]dodecyl} ethanethioate (FT), a compound with a functional group exhibiting selective affinity towards Cr(VI) ions, was developed. FT was mixed with shorter-chain thiol-decanethiol (DT), to obtain an Au electrode surface well covered by a thiol monolayer. The composition and high quality of self-assembled monolayers (SAMs) were crucial factors influencing the performance of the capacitive sensor. In this work, SAMs formed from FT and DT mixtures with different compositions were studied. For physicochemical characterization of SAMs X-ray photoelectron spectroscopy (XPS), contact angle measurements as well as atomic force microscopy (AFM) were used. Cyclic voltammetry was employed to estimate an electrode surface coverage. Based on the obtained results, the composition of thiol layer providing the best parameters for capacitive sensing of chromium(VI) was chosen. Moreover, the analytical performance of sensor was verified.

  相似文献   

4.
The supramolecular self-assembled monolayers (SAMs) of C(60) by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C(60) monoanion. The results indicate that monoanionic C(60) plays a crucial role in the formation of the C(60)-containing self-assembled monolayers. The generation of C(60) monoanion and the formation process of C(60) SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C(60) SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C(60) by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C(60). The new C(60) SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C(60) on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C(60) over the thiolated beta-CD SAMs. The surface hydrophobicity increased greatly upon the formation of the C(60)-containing SAMs as analyzed by water contact angle measurements. The results are in agreement with the formation of 1:1 complex of C(60) and cyclodextrin on gold surfaces, though it also reveals some non-homogeneous features of the monolayers.  相似文献   

5.
6.
Two new polychlorotriphenylmethyl (PTM) derivatives bearing a thioacetate and a disulfide group have been synthesized to anchor on gold substrate. On the basis of these molecules, three strategies were followed to prepare self-assembled monolayers (SAMs) of electroactive PTMs. The resulting SAMs were fully characterized by contact angle, atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The high coverage surface and stability of the SAMs were demonstrated by cyclic voltammetry. In addition, the electrochemical experiments proved that these SAMs are bistable since it is possible to reversibly switch between the PTM radical state to the corresponding anion. The magnetic response was investigated by electron paramagnetic resonance. We observed that when the PTM SAMs are in their radical form they confer magnetic functionality to the surface, whereas when they are in the anionic state, the surface is diamagnetic. Thus, the PTM-modified substrates are multifunctional surfaces since they combine magnetic and electroactive properties. The reported results show the high potential of these materials for the fabrication of surface molecular devices.  相似文献   

7.
To better understand surface forces across polymer melts, we measured the force between two chemically well-defined solid surfaces in a melt of polymer chains with a functional end group. As for surfaces, we used self-assembed monolayers (SAMs) of alkyl thiols with different end groups (methyl, amino, and hydroxyl) on gold. The polymer was a hydroxyl-terminated polyisoprene. To measure the force, an atomic force microscope was used. Between methyl-terminated SAMs, a weak and short-range repulsion was detected. Between hydroxyl or amino-terminated SAMs, a strong and long-range repulsion was observed up to distances of 16 nm. This indicates that the hydroxyl group of the polymer binds to the hydroxyl or amino groups of the SAMs. It forms a brush-like structure, which leads to steric repulsion. On amino-terminated SAMs, force-versus-distance curves on approach and retraction were monotonically repulsive and reversible. With hydroxyl-terminated SAMs, a jump was observed on approach when the load exceeded a certain threshold. On retraction, an adhesion had to be overcome. We interpret the jump as a rupture of the polymer layer. It indicates that the kinetics of bond and brush formation is faster on OH-SAMs than on NH2-SAMs.  相似文献   

8.
We have characterized self-assembled monolayers (SAMs) of thiol-derivatized peptide nucleic acid (PNA) chains adsorbed on gold surfaces by using reflection absorption infrared spectroscopy (RAIRS) and X-ray photoemission spectroscopy (XPS) techniques. We have found that the molecular orientation of PNAs strongly depends on surface coverage. At low coverage, PNA chains lie flat on the surface, while at high coverage, PNA molecules realign their molecular axes with the surface normal and form SAMs without the need of co-immobilization of spacers or other adjuvant molecules. The change in the molecular orientation has been studied by infrared spectroscopy and it has been confirmed by atomic force microscopy (AFM). PNA immobilization has been followed by analyzing the N(1s) XPS core-level peak. We show that the fine line shape of the N(1s) core-level peak at optimal concentration for biosensing is due to a chemical shift. A combination of the above-mentioned techniques allow us to affirm that the structure of the SAMs is stabilized by molecule-molecule interactions through noncomplementary adjacent nucleic bases.  相似文献   

9.
聚合物单分子力谱的研究进展   总被引:2,自引:0,他引:2  
在单分子水平研究聚合物体系的分子内及分子间相互作用, 对于揭示其结构-性能的关系, 进而实现对相应功能的调控极为重要. 基于原子力显微镜技术(AFM)的单分子力谱, 由于其操作简单且适用面广, 在单分子研究领域得到了广泛的应用. 本文概括了该技术在生物高分子及合成高分子体系的研究进展. 对于生物高分子体系, 主要介绍了核酸(DNA/RNA)、 蛋白质和多糖(淀粉)的单分子力谱研究及利用各自力学指纹谱对其它分子间的相互作用的研究. 对于合成高分子体系, 主要介绍了聚合物的一级结构与单链弹性的关系及溶剂和聚集态结构等对高分子单链力学性质的影响规律.  相似文献   

10.
We used atomic force microscopy (AFM) to explore the antigen binding forces of individual Fv fragments of antilysozyme antibodies (Fv). To detect single molecular recognition events, genetically engineered histidine-tagged Fv fragments were coupled onto AFM tips modified with mixed self-assembled monolayers (SAMs) of nitrilotriacetic acid- and tri(ethylene glycol)-terminated alkanethiols while lysozyme (Lyso) was covalently immobilized onto mixed SAMs of carboxyl- and hydroxyl-terminated alkanethiols. The quality of the functionalization procedure was validated using X-ray photoelectron spectroscopy (surface chemical composition), AFM imaging (surface morphology in aqueous solution), and surface plasmon resonance (SPR, specific binding in aqueous solution). AFM force-distance curves recorded at a loading rate of 5000 pN/s between Fv- and Lyso-modified surfaces yielded a distribution of unbinding forces composed of integer multiples of an elementary force quantum of approximately 50 pN that we attribute to the rupture of a single antibody-antigen pair. Injection of a solution containing free Lyso caused a dramatic reduction of adhesion probability, indicating that the measured 50 pN unbinding forces are due to the specific antibody-antigen interaction. To investigate the dynamics of the interaction, force-distance curves were recorded at various loading rates. Plots of unbinding force vs log(loading rate) revealed two distinct linear regimes with ascending slopes, indicating multiple barriers were present in the energy landscape. The kinetic off-rate constant of dissociation (k(off) approximately = 1 x 10(-3) s(-1)) obtained by extrapolating the data of the low-strength regime to zero force was in the range of the k(off) estimated by SPR.  相似文献   

11.
The atomic force microscope (AFM) was used to perform surface force measurements in contact mode to investigate surface properties of model systems at the nanoscale. Two types of model systems were considered. The first one was composed of a rigid substrate (silicon plates) which was chemically modified by molecular self-assembling (SAMs) to display different surface properties (hydroxyl, amine, methyl and ester functional groups). The second system consists of model polymer networks (cross-linked polydimethylsiloxane or PDMS) of variable mechanical properties, whose surfaces were chemically modified with the same groups as before with silicon substrates. The comparison of the force curves obtained from the two model systems shows that the viscoelastic or mechanical contribution dominates in the adhesion on polymer substrates. Finally, a relationship, which expresses the separation energy at a local scale as a function of the energy dissipated within the contact zone, on one hand and the surface properties of the polymer on the other, was proposed.  相似文献   

12.
Atomic force microscopy (AFM) was employed to characterize the surface chemistry distribution on individual polystyrene latex particles. The particles were obtained by surfactant-free emulsion polymerization and contained hydrophilic quaternary ammonium chloride, sodium sulfonate, or hydroxyethyl groups. The phase shift in dynamic force mode AFM is sensitive to charge/chemical interactions between an oscillating atomic force microscope tip and a sample surface. In this work, the phase imaging technique distinguished phase domains of 50-100 nm on the surfaces of dried latex particles in ambient air. The domains are attributed to the separation of ion-rich and ion-poor components of the polymer on the particle surface.  相似文献   

13.
The interaction of adsorbed poly(ethylene oxide) (PEO) mushrooms with clean silica-ethylammonium nitrate (EAN, a protic ionic liquid) interfaces is investigated using atomic force microscopy (AFM). 10 kDa, 35 kDa and 100 kDa PEO was used to prepare polymer layers ex situ by drop casting from 0.01 wt% EAN solutions. AFM tapping mode measurements of dried, solvent free PEO layers revealed oblate structures, which increase in size with molecular weight. Colloid probe force curve measurements of these surfaces re-solvated with EAN suggest PEO adopts a mushroom morphology, with the interaction range (layer thickness) increasing with molecular weight. Attractive forces on approach and single strand stretching forces on retraction show PEO has a strong affinity for the silica-EAN interface. The single polymer strand stretching forces follow the freely jointed chain model under good solvent conditions. Contour lengths close to the theoretical limits of 120 nm for the 10 kDa, 290 nm for the 35 kDa and 1240 nm for the 100 kDa PEO samples are observed, while fitted Kuhn lengths are small, at 0.14 nm.  相似文献   

14.
We report a simple, universal method for forming high surface coverage SAMs on ferromagnetic thin (< or =100 nm) films of Ni, Co, and Fe. Unlike previous reports, our technique is broadly applicable to different types of SAMs and surface types. Our data constitutes the first comprehensive examination of SAM formation on three different ferromagnetic surface types using two different surface-binding chemistries (thiol and isocyanide) under three different preparation conditions: (1) SAM formation on electroreduced films using a newly developed electroreduction approach, (2) SAM formation on freshly evaporated surfaces in the glovebox, and (3) SAM formation on films exposed to atmospheric conditions beforehand. The extent of SAM formation for all three conditions was probed by cyclic voltammetry for surfaces functionalized with either (11-thiolundecyl)ferrocene (Fc-(CH2) 11-SH) or (11-isocyanoundecyl)ferrocene (Fc-(CH2) 11-NC). SAM formation was also probed for straight-chain molecules, hexadecanethiol and hexadecaneisocyanide, with contact angle measurements, X-ray photoelectron spectroscopy, and reflection-absorption infrared spectroscopy (RAIRS). The results show that high surface coverage SAMs with low surface-oxide content can be achieved for thin, evaporated Ni and Co films using our electroreduction process with thiols. The extent of SAM formation on electroreduced films is comparable to what has been observed for SAMs/Au and to what we observe for SAMs/Ni, Co, and Fe samples prepared in the glovebox.  相似文献   

15.
Yang  Jin-Xia  Qian  Hu-Jun  Gong  Zheng  Lu  Zhong-Yuan  Cui  Shu-Xun 《高分子科学》2022,40(4):333-337

In this work, the single-chain elasticity of polyformaldehyde (POM) is studied, for the first time, by employing atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS). We find that the single-chain elasticity of POM in a nonpolar organic solvent (nonane) can be described well by a theoretical model (QM-FRC model), when the rotating unit length is 0.144 nm (C-O bond length). After comparison, POM is more flexible than polystyrene (a typical polymer with C-C backbone) at the single-chain level, which is reasonable since the C-O bond has a lower rotation barrier than C-C bond. This result indicates that the flexibility of a polymer chain can be tuned by the C-O bond proportion in backbone, which casts new light on the rational design of new synthetic polymers in the future.

  相似文献   

16.
The kinetics of enzymatic surface-initiated polymerization of PHB on gold surface has been examined by SPR and the resultant polymer layers characterized by AFM and FT-IR spectrometry. The immobilized enzyme catalyzed surface-initiated polymerization of 3HB-CoA, resulting in the formation of a polymer brush on the surface. The rate of polymer growth from the surface was monitored by SPR in real-time. Polymer growth as measured by the increase in the resonance angle showed no apparent lag phase during the polymerization reaction. SPR analysis also revealed that the thickness of the polymer film could be controlled by varying the initial enzyme density on the surface. The average thicknesses of the PHB film after polymerization reaction were 95, 45 and 15 nm for the surfaces that were treated with 0.5, 0.3 and 0.1*10(-6) M of enzyme, respectively. The binding of PHA synthase at different concentration to the mixed SAMs and subsequent polymerization.  相似文献   

17.
This paper describes a new class of salt-responsive poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) on top of polyelectrolyte multilayer (PEMs) films. PEM surfaces with poly(diallyldimethylammonium chloride) as the topmost layer are chemically patterned by microcontact printing (muCP) oligomeric PEG molecules with an activated carboxylic acid terminal group (m-dPEG acid). The resistive m-d-poly(ethylene glycol) (m-dPEG) acid molecules on the PEMs films were subsequently removed from the PEM surface with salt treatment, thus converting the nonadhesive surfaces into adhesive surfaces. The resistive PEG patterns facilitate the directed deposition of various macromolecules such as polymers, dyes, colloidal particles, proteins, liposomes, and nucleic acids. Further, these PEG patterns act as a universal resist for different types of cells (e.g., primary cells, cell lines), thus permitting more flexibility in attaching a wide variety of cells to material surfaces. The patterned films were characterized by optical microscopy and atomic force microscopy (AFM). The PEG patterns were removed from the PEM surface at certain salt conditions without affecting the PEM films underneath the SAMs. Removal of the PEG SAMs and the stability of the PEM films underneath it were characterized with ellipsometry and optical microscopy. Such salt- and pH-responsive surfaces could lead to significant advances in the fields of tissue engineering, targeted drug delivery, materials science, and biology.  相似文献   

18.
This study presents a method to measure the contact angles of oils on a substrate in water. Diiodomethane and perfluorodecalin were used as model oils. Self-assembled monolayers (SAMs) were prepared by adjusting the mole ratio of CH 3- and OH-terminated alkanethiols. The contact angles of the two oils in water increased with increasing hydrophilicity of the SAMs, and the results are contrasted with the contact angles of oils on these surfaces in air. In addition, perfluorodecalin showed higher contact angles than diiodomethane on the same surface. On the poly(N-isopropylacrylamide) (PNiPAAM) monolayer surface, the contact angles of the two oils in water decreased sharply at the transition temperature of PNiPAAM (approximately 30 degrees C), but the surface retained fairly high hydrophilicity even after the transition. The above results are correlated with atomic force microscopy (AFM) measurements of the adhesion force between protein-immobilized AFM tips (human fibrinogen and bovine serum albumin) and these monolayers.  相似文献   

19.
Linear, branched, and arborescent fluoropolymer-Si hybrids were prepared via surface-initiated atom transfer radical polymerization (ATRP) from the 4-vinylbenzyl chloride (VBC) inimer and ClSO(3)H-modified VBC that were immobilized on hydrogen-terminated Si(100), or Si-H, surfaces. The simple approach of UV-induced coupling of VBC with the Si-H surface provided a stable, Si-C bonded monolayer of "monofunctional" ATRP initiators (the Si-VBC surface). The aromatic rings of the Si-VBC surface were then sulfonated by ClSO(3)H to introduce sulfonyl chloride (-SO(2)Cl) groups and to give rise to a monolayer of "bifunctional" ATRP initiators. Kinetics study indicated that the chain growth of poly(pentafluorostyrene) from the functionalized silicon surfaces was consistent with a "controlled" or "living" process. The chemical composition and functionality of the silicon surface were tailored by the well-defined linear and branched fluoropolymer brushes. Atomic force microscopy images revealed that the surface-initiated ATRP of pentafluorostyrene (PFS) had proceeded uniformly on the Si-VBC surface to give rise to a dense and molecularly flat surface coverage of the linear brushes. The uniformity of surfaces with branched brushes was controlled by varying the feed ratio of the monomer and inimer (VBC in the present case). The living chain ends on the functionalized silicon surfaces were used as the macroinitiators for the synthesis of diblock copolymer brushes, consisting of the PFS and methyl methacrylate polymer blocks.  相似文献   

20.
The synthesis of surface-confined, nanometer-sized dendrimers and Au nanoparticles was performed starting from single Pd(II) pincer adsorbate molecules (10) embedded as isolated species into 11-mercapto-1-undecanol and decanethiol self-assembled monolayers (SAMs) on gold. The coordination of monolayer-protected Au nanoclusters (MPCs) bearing phosphine moieties at the periphery (13), or dendritic wedges (8) having a phosphine group at the focal point, to SAMs containing individual Pd(II) pincer molecules was monitored by tapping mode atomic force microscopy (TM AFM). The individual Pd(II) pincer molecules embedded in the decanethiol SAM were visualized by their coordination to phosphine MPCs 13; isolated objects with a height of 3.5 +/- 0.7 nm were observed by TM AFM. Reaction of these embedded Pd(II) pincer molecules with the dendritic wedge 8 yielded individual molecules with a height of 4.3 +/- 0.2 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号