首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By estimating the force and torque acting on the cube for the two cases of a uniform flow field and a rotational flow field, we have discussed whether or not there is a coupling between the translational and the rotational motion. From the characteristics of the friction coefficients, we may understand that there is no coupling between the translation motion and the rotational motion in the situation of the Reynolds number being sufficiently smaller than unity. In contrast, in the case of a non-slow flow field with the Reynolds number larger than unity, the coupling characteristics of the motion of a cube is certainly recognised and therefore the interaction with the ambient fluid is characterised by a variety of friction coefficients including friction coefficients that relate the forces acting on the cube to the angular velocities of the rotational motion. Hence, the employment of these translational and rotational diffusion coefficients for a cube enables the implementation of Brownian dynamics simulations for a suspension composed of cubic particles in order to analyse the dynamic characteristics of a cubic particle suspension.

Highlights
  1. We have considered a flow problem around a cube in order to numerically clarify the characteristics of the translational and rotational friction or diffusion coefficients.

  2. In a slow flow field the motion of the cube need only to be characterised by two friction coefficients, i.e. the translational and rotational friction coefficients.

  3. In the case of a non-slow flow field, the coupling characteristics between the translational motion and the rotational motion are recognised.

  4. Employment of these diffusion coefficients enables the implementation of Brownian dynamics simulations for a suspension composed of cubic particles.

  相似文献   

2.
In this investigation a solution methodology is presented for studying the stability of a uniform cantilever having a translational and rotational spring at its support, carrying two concentrated masses, one at the support and the other at its tip, and subjected to a follower compressive force at its free end. The analysis is based on Timoshenko's beam theory by considering the cantilever as a continuous elastic system. The coupling effects on the flutter load are fully assessed for a variety of parameters such as translational and rotational springs at the support, translational and rotational inertia of the concentrated masses, and cross-sectional shape, as well as transverse shear deformation and rotatory inertia of the mass of the column.  相似文献   

3.
Using particle-tracking techniques, the translational and rotational diffusion of paralyzed E. coli with and without flagella are studied experimentally. The position and orientation of the bacteria are tracked in the lab frame and their corresponding mean-square displacements are analyzed in the lab frame and in the body frame to extract the intrinsic anisotropic translational diffusion coefficients as well as the rotational diffusion coefficient for both strains. The deflagellated strain is found to show an anisotropic translational diffusion, with diffusion coefficients that are compatible with theoretical estimates based on its measured geometrical features. The corresponding translational diffusion coefficients of the flagellated strain have been found to be reduced as compared to those of the deflagellated counterpart. Similar results have also been found for the rotational diffusion coefficients of the two strains. Our results suggest that the presence of flagella --even as a passive component-- has a significant role in the dynamics of E. coli, and should be taken into account in theoretical studies of its motion.  相似文献   

4.
Dynamic behaviours and stability of an automatic ball balancer (ABB) in an optical disk drive are analyzed based on the proposed three-dimensional dynamic model. For dynamic analysis, the feeding deck with the ball balancer and a spindle motor is modelled as a rigid body with six degrees of freedom. The nonlinear equations of motion are derived using Lagrange's equation in order to describe the translational and rotational motions of the system. From the derived nonlinear equations, the linearized equations of motion in the neighbourhood of a balanced equilibrium position are obtained by the perturbation method. These equations are coupled, linear, differential equations with time-dependent periodic coefficients, from which the stability of the system is analyzed by using the Floquet theory. Finally, the time responses are computed to verify the results of the stability analysis, and to investigate the balancing performance of the ABB.  相似文献   

5.
The coupling between molecular reorientation and translational displacement is studied in a fluid of rough spheres. The correlation functions frequently encountered in thermal neutron scattering and laser light scattering are computed using a binary collision approximation. These are compared with the corresponding uncoupled results. In the diffusion limit coupled and uncoupled diffusion coefficients are found. The Hubbard relation is generalized. The maximum deviation between the coupled and uncoupled results occur for wavenumbers commonly found in thermal neutron scattering. The ratio of uncoupled and coupled correlation times displays regions where translation-rotation coupling is clearly important. In these regions there are important differences in the computed coupled and uncoupled correlation functions.  相似文献   

6.
研究了二分量带电粒子悬浮系统的短时间平动和转动自扩散系数.由于存在静电相互作用和流体力学作用,扩散系数与两种粒子的尺寸比,它们的体积分数,以及所带的有效电荷都有关.计入了流体力学相互作用对扩散张量的二体贡献和首项三体贡献.计算结果表明,流体力学作用对于带电粒子系统的影响要小于它对硬球粒子系统的影响.扩散系数随两种粒子的尺寸比和它们的体积分数变化的关系可以用有效硬球模型来解释,而其定性结果与实验相符合.  相似文献   

7.
We show that the decreased light absorption and the anomalous optical rotatory dispersion in helical polynucleotides and polypeptides may be interpreted purely as a local field effect. The electric field of the incident light wave is screened off from each residue by the induced electric dipoles in the others. Quantum-mechanical calculations based on time-dependent Hartree theory and this local field picture correspond precisely with the formulae derived in Tinoco's, Rhodes's, and Moffitt's exciton theories, provided that the Coulomb interactions are small. The degenerate exciton waves in our theory correspond to normal modes of a set of coupled oscillators, and the rotational strengths and oscillator strengths are conserved. There is no conflict between Tinoco's theory of hypochromism and the ones proposed by Bolton and Weiss and by Nesbet. One new conclusion is that the energy shifts accompanying hypochromism should not vary much when the exciton coupling changes from the strong to the weak coupling limits.  相似文献   

8.

Élie Cartan’s “généralisation de la notion de courbure” (1922) arose from a creative evaluation of the geometrical structures underlying both, Einstein’s theory of gravity and the Cosserat brothers generalized theory of elasticity. In both theories groups operating in the infinitesimal played a crucial role. To judge from his publications in 1922–24, Cartan developed his concept of generalized spaces with the dual context of general relativity and non-standard elasticity in mind. In this context it seemed natural to express the translational curvature of his new spaces by a rotational quantity (via a kind of Grassmann dualization). So Cartan called his translational curvature “torsion” and coupled it to a hypothetical rotational momentum of matter several years before spin was encountered in quantum mechanics.

  相似文献   

9.
Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role.  相似文献   

10.
11.
A model is presented for the dynamics of crystal lattices whose elements have finite inertia and distinct equilibrium orientations. The model is based upon representing the non-central interactions by the bending of a flexible spring in analogy with the extensible spring of Born-Von Karman for central interactions in simple lattices. The model is stable for all configurations and the rotational and translational modes are coupled. The parameter expressing the bending rigidity can be determined from infrared or Raman spectroscopy and this is illustrated for a special mode of the KNO3 crystal. Dispersion relations for the lattice modes are given for a linear chain of identical molecules and KNO3 crystal.  相似文献   

12.
The paper presents the results obtained in determining the accommodation coefficients for the translational and rotational energy of gas molecules in a Knudsen flow past a thin wire. The method used was based on numerically solving the complete heat balance equation for a wire probe. The accommodation coefficients were determined for H2, N2, CH4, and CO2 on a gilded tungsten surface. For hydrogen with a quenched rotational energy, a negative accommodation coefficient of rotational energy was obtained due to the conversion of the rotational energy of incident molecules into the translational energy of reflected molecules.  相似文献   

13.
Equations of nonlinear acoustics are derived from the micromechanical representation of a granular medium as a system of elastically interacting particles possessing translational and rotational degrees of freedom. The structure of the equations is invariant with respect to the shape and size of the particles. The changes in the latter affect only the coefficients in the equations. The inclusion of microrotations and moment interactions of particles leads to the formation of a new type of waves in the medium—microrotational waves. Their dispersion properties are similar to those of spin waves propagating in a magnetoelastic medium. In the low-frequency approximation, the microrotational waves disappear, and the equation describing the transverse waves acquires a term with quadratic nonlinearity. The latter provides an explanation for the generation of the second shear harmonic that is observed in real solids contrary to the predictions of the nonlinear theory of elasticity, which prohibits such phenomena.  相似文献   

14.
A new analysis of depolarized dynamic light scattering data is presented, which allows the unambiguous determination of rotational and translational diffusions coefficients of nanorods in suspension. By visualizing data scaling, purely translational diffusive motions can be isolated from vertically polarized scattering, allowing the unique determination of rotational diffusion from the depolarized scattering. The method is applied to nanorods with four different aspect ratios, and compared with theoretical predictions. Diffusion coefficients obtained show good agreement with calculations based on the direct measurements of rod length and diameter. Where the theories are shown to be valid, the method allows the measurement of statistically meaningful particle sizes and aspect ratios.  相似文献   

15.
Analytically-derived vector corrections are included as additional coupling coefficients in numerical calculations of scalar coupled-mode and compound-mode theory (SCMT) of composite fibre–slab waveguides. The slab waveguide is asymmetric, with moderate light-wave guiding and coupling assumed and the resultant polarization effects are of interest. It is found that the modifications to light propagation and coupling coefficients determined previously by first-order SCMT are dependent mainly on the strength of coupled fibre and slab modes, the thickness of the guiding layers and the ratio of refractive indices of guiding to cladding layer (asymmetry of the slab waveguide). The vector corrections observed are not significant compared with our previous SCMT results, as the optical constants defined appear to satisfy the approximations necessary for the scalar analysis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The temperature dependence of the water-proton dynamic nuclear polarization (DNP) enhancement from Fremy’s salt nitroxide radicals was measured in a magnetic field of 9.2?T (corresponding to 260?GHz microwave (MW) and 392?MHz NMR frequencies) in the temperature range of 15–65?°C. The temperature could be determined directly from the proton NMR line shift of the sample. Very high DNP enhancements of ?38 (signal integral) or ?81 (peak intensity) could be achieved with a high-power gyrotron MW source. The experimental findings are compared with classical Overhauser theory for liquids, which is based on the translational and rotational motion of the molecules and with molecular dynamics calculations of the coupling factor.  相似文献   

17.
Using particle simulations of the uniform shear flow of a rough dilute granular gas, we show that the translational and rotational velocities are strongly correlated in direction, but there is no orientational correlation-induced singularity at perfectly smooth (beta=-1) and rough (beta=1) limits for elastic collisions (e=1); both the translational and rotational velocity distribution functions remain close to a Gaussian for these two limiting cases. Away from these two limits, the orientational as well as spatial velocity correlations are responsible for the emergence of non-Gaussian high-velocity tails. The tails of both distribution functions follow stretched exponentials, with the exponents depending on normal (e) and tangential (beta) restitution coefficients.  相似文献   

18.
We predict that it is possible to cool rotational, vibrational, and translational degrees of freedom of molecules by coupling a molecular dipole transition to an optical cavity. The dynamics is numerically simulated for a realistic set of experimental parameters using OH molecules. The results show that the translational motion is cooled to a few muK and the internal state is prepared in one of the two ground states of the two decoupled rotational ladders in a few seconds. Shorter cooling times are expected for molecules with larger polarizability.  相似文献   

19.
Gu Xu 《Solid State Ionics》1992,50(3-4):345-347
The “vehicular effects” of chain segment motion on ionic diffusion in solid polymer electrolytes have been investigated via numerical simulation on a two-dimensional square lattice where the dynamical variation of chain configuration is presented by translational or rotational bond movement. It is found that (a) both types of bond motion promote continuous diffusion when the fraction (p) of available bonds is below the static percolation threshold of p=0.5 in two dimensions; (b) translational motion of bonds parallel to the direction of diffusion produces larger diffusion coefficients (D) than that by random renewal of the dynamic bond percolation model (DBPM), while the perpendicular motion or rotational motion gives smaller values of D; (c) Smooth lines instead of “stair-case like” curves generated by DBPM are obtained in the mean-squared displacement versus time plot, when bonds are shifting along the diffusion route. The dependence of diffusion coefficients on the variation of motion patterns of bonds is expected to be related to the temperature change under which these patterns are excited accordingly, such that VTF behavior of certain polymer electrolytes may be deduced.  相似文献   

20.
This paper investigates the coupled bending vibrations of a stationary shaft with two cracks. It is known from the literature that, when a crack exists in a shaft, the bending, torsional, and longitudinal vibrations are coupled. This study focuses on the horizontal and vertical planes of a cracked shaft, whose bending vibrations are caused by a vertical excitation, in the clamped end of the model. When the crack orientations are not symmetrical to the vertical plane, a response in the horizontal plane is observed due to the presence of the cracks. The crack orientation is defined by the rotational angle of the crack, a parameter which affects the horizontal response. When more cracks appear in a shaft, then the coupling becomes stronger or weaker depending on the relative crack orientations. It is shown that a double peak appears in the vibration spectrum of a cracked or multi-cracked shaft.Modeling the crack in the traditional manner, as a spring, yields analytical results for the horizontal response as a function of the rotational angle and the depths of the two cracks. A 2×2 compliance matrix, containing two non-diagonal terms (those responsible for the coupling) serves to model the crack. Using the Euler–Bernoulli beam theory, the equations for the natural frequencies and the coupled response of the shaft are defined. The experimental coupled response and eigenfrequency measurements for the corresponding planes are presented. The double peak was also experimentally observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号