首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
李小华  黄锦凡 《中国化学》2003,21(12):1543-1552
Molecular dynamics computer simulation based on the Born-Mayer-Huggins potential function has been carried out to study the effects of duster size and temperature on the nucleation rate of sodium chloride dusters in the temperature range of 580 K to 630 K. Clusters with 256 and 500 NaCl molecules have been studied and the results have been compared with those obtained from 108 molecule dusters. The melting point (MP) of the clusters were observed to increase with the size of the clusters and can be well described by a linear equation MP =1107(37)-1229(23)N^-1/3(N is the number of molecules in the duster).The nucleation rate was found to decrease with increasing the duster size or temperature. Various nucleation theories have been used to interpret the nucleation rates obtained from this molecular dynamics simulation. It is possible to use a constant diffuse interface thickness to interpret the nucleation rate from the diffuse interface theory in the temperature range of this study. However, the interfacinl free energy estimated from classical nucleation theory and diffuse interface theory increases too fast with increasing the temperature while that from Gran-Gunton theory does not change with changing temperatures.The sizes of critical nuclei estimated from all the theories are smaller than those estimated from our simulations.  相似文献   

2.
王宏  武海顺  贾建峰 《中国化学》2006,24(6):731-738
Structures and thermodynamic properties of the imidoboranes (HBNH)n (n=1-16) have been investigated theoretically at the B3LYP/6-31G^* level of theory. Needle-shaped oligomers that violate the isolated square rule were found to be more stable than cage isomers. The needle-shaped oligomer with n=16 was predicted to be exceptionally stable at low temperature, hexamer and octamer clusters dominated the gas phase at higher temperature. The highest oligomerization degree of the spontaneous cluster fomation has been estimated. It was concluded that generation of the gas phase (HBNH)n clusters with oligomerization degree n ≥24 was viable, making these species possible intermediates involved in the gas phase generation of BN nanoparticles.  相似文献   

3.
赵磊李以圭  仲崇立 《中国化学》2007,25(12):1904-1910
The polymer reference interaction site model (PRISM) integral equation theory was used to describe the structure and thermodynamic properties of atactic polystyrene (aPS) melt, in which the monomer of aPS is represented with an eight-site model to characterize its microstructure. The intramolecular structure factors needed in the PRISM calculations were obtained from single chain MD simulations. The calculated results indicate that the results by the integral equation method agrees well with experiments, and can reflect the fine microscopic structure of real aPS melt. This work shows that the PRISM theory is a powerful tool for investigating the structure and properties of complex polymers.  相似文献   

4.
The self-assembled monolayers (SAMs) of 1-adamantanethiolate and its derivatives on Au(111) surface were investigated. Density functional theory (DFT) calculation indicates that the most stable configuration for absorption is at the face centered cubic (fcc)-bridge site. Canonical ensemble molecular dynamics (MD) simulations were carried out to study the structures and energies of the SAMs. The ordered structures of the SAMs were analyzed by means of radial distribution function and the relative stability of the SAMs was compared. It was concluded by the comparison of various contributions to the SAM formation energy that the formation of the SAMs was determined by the intermolecular nonbonding interaction and the chemical bonding interaction of sulfur and gold.  相似文献   

5.
The electronic structure and optical properties of CdGeAs2 were calculated by the first principle method using ultra-soft pseudo-potential approach of the plane wave based upon density functional theory (DFT). Mulliken population analysis showed that atomic orbital hybridization occurs when forming chemical bonds. The relationship between inter-band transition and optical properties was analyzed to provide a theoretical basis for investigating or controlling CdGeAs2 crystal defects.  相似文献   

6.
κ־�� 《高分子科学》2013,31(1):187-200
Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM), which showed that LDH nanoparticles were found to be well distributed at the nanometer level. The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBS remained almost unchanged. In kinetics analysis of nonisothermal crystallization, the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites, whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites. The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis. The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate. The POM showed that the small and less perfect crystals were formed in nanocomposites.  相似文献   

7.
The influences of magnesium and ferric ions in their different ratios on the rate of gypsum crystallization were studied under the conditions similar to those of wet flue-gas desulfurization(WFGD). The results show that addition of both Mg^2+ and Fe^3+ increased induction time and decreased the growth efficiency up to 50% compared with the baseline(without impurities) depending on the concentration and the type of impurity. The effects of Mg^2+ and Fe^3+ on the surface energy and the rate of nucleation were estimated by employing the classical nucleation theory. The surface energy decreased by 8% and 14% with the addition of 0.02 mol/L magnesium or ferric ions, respectively, compared to the baseline. Mg^2+ and Fe^3+ made the growth rate of the (020), (021) and (040) faces of gypsum crystal a much greater reduction, which leads to the formation of needle crystals compared to the baseline which favors the formation of plate or flakes. Furthermore, an edge detection program was developed to quantify the effects of impurities on the filtration rate of gypsum product. The results show that the inhibition efficiency of the presence of 0.02 mol/L Mg^2+ and Fe^3+ on the filtration rate of gypsum crystal ranges from 22% to 39%.  相似文献   

8.
Molecular dynamics computer simulation has been carded out to study the structure and physical properties of iron nanoparticles with 331 to 2133 Fe atoms or with diameter from 2.3 to 4.3 nm. The core of liquid nanodroplets has the similar structure of the bulk molten iron liquid that has an average coordination number around 10.5 and the packing density around 0.45, although the closest Fe-Fe distance is slightly longer in the bulk liquid. Most of the iron nanoparticles formed from the cooling of molten nanodroplets have the same body center cubic crystal structure as it was observed in the bulk under the normal temperature and pressure. Lattice contraction was observed for iron nanoparticles. An amorphous solid and an HCP like solid were obtained accidentally during the quenching runs on Fe331 nanoparticles. The physical properties of iron nanoparticles such as molar volume, density, thermal expansion coefficient, melting point, heat of fusion, heat capacity and diffusion coefficient were estimated based on the results obtained from this simulation. The dependence of physical properties on the nanoparticle sizes was addressed.  相似文献   

9.
Metallocene-catalyzed linear low-density polyethylene/polypropylene (mLLDPE/PP) blends were prepared by ultrasonic extrusion in this work. Their extrusion processing behaviors were estimated by online measured data, such as the die pressure and flow rate. Crystallization and mechanical properties of the blends were also investigated. The results show that the addition of PP improves the processing behaviors of mLLDPE, but has little effect on its mechanical properties. On the other hand, the addition of mLLDPE improves the impact strength of PP, but has little effect on its processing behavior. The processing behaviors and mechanical properties of mLLDPE/PP blends get further improved due to the presence of ultrasonic oscillation during extrusion. Compared with PP-rich blends, the apparent viscosity drop of mLLDPE-rich blends is more sensitive to ultrasonic oscillation. The ultrasonic oscillation affects the crystal nucleation, while barely the other crystalline behaviors of the blends.  相似文献   

10.
All-atom molecular dynamics (MD) simulations and chemical shifts were used to study interactions and structures in the glycine-water system. Radial distribution functions and the hydrogen-bond network were applied in MD simulations. Aggregates in the aqueous glycine solution could be classified into different regions by analysis of the hydrogen-bonding network. Temperature-dependent NMR spectra and the viscosity of glycine in aqueous solutions were measured to compare with the results of MD simulations. The variation tendencies of the hydrogen atom chemical shifts and viscosity with concentration of glycine agree with the statistical results of hydrogen bonds in the MD simulations.  相似文献   

11.
Molecular dynamics (MD) computer simulations have been carried out to study the structures, properties, and crystal nucleation of iron nanoparticles with 331 Fe atoms or with diameter around 2 nm. Structure information for the nanoparticles was analyzed from the MD simulations. Three crystalline phases and one amorphous phase were obtained by cooling the nanoparticles from their molten droplets at different cooling rates or with different lengths of cooling time periods. Molten droplets froze into three different solid phases and a solid-solid transition from a disordered body-centered cubic (BCC) phase to an ordered BCC phase were observed during the slow cooling and the quenching processes. Properties of nanoparticle Fe331, such as melting point, freezing temperature, heat capacity, heat of fusion, heat of crystallization, molar volume, thermal expansion coefficient, and diffusion coefficient, have been estimated. Nucleation rates of crystallization to two solid phases for Fe331 at temperatures of 750, 800, and 850 K are presented. Both classical nucleation theory and diffuse interface theory are used to interpret our observed nucleation results. The interfacial free energy and the diffuse interface thickness between the liquid phase and two different solid phases are estimated from these nucleation theories.  相似文献   

12.
我们利用Born-Mayer-Huggins相互作用势函数对(KF)N(N=108,256,500和864)团簇进行了分子动力学(MD)模拟。为了避免周期性边界条件对相变、成核和重结晶的干扰作用,对体系采用了自由边界。基于MD模拟结果,对团簇的熔化温度、熔化焓、扩散系数、成核速率、固液界面自由能、临界核大小等进行了计算和讨论。在对(KF)864双晶团簇的热退火模拟中,观察到了固态的重结晶和晶粒的生长。经典的成核理论成功地解释了(KF)864双晶团簇的重结晶MD模拟结果。  相似文献   

13.
The phase field theory (PFT) has been applied to predict equilibrium interfacial properties and nucleation barrier in the binary eutectic system Ag-Cu using double well and interpolation functions deduced from a Ginzburg-Landau expansion that considers fcc (face centered cubic) crystal symmetries. The temperature and composition dependent free energies of the liquid and solid phases are taken from CALculation of PHAse Diagrams-type calculations. The model parameters of PFT are fixed so as to recover an interface thickness of approximately 1 nm from molecular dynamics simulations and the interfacial free energies from the experimental dihedral angles available for the pure components. A nontrivial temperature and composition dependence for the equilibrium interfacial free energy is observed. Mapping the possible nucleation pathways, we find that the Ag and Cu rich critical fluctuations compete against each other in the neighborhood of the eutectic composition. The Tolman length is positive and shows a maximum as a function of undercooling. The PFT predictions for the critical undercooling are found to be consistent with experimental results. These results support the view that heterogeneous nucleation took place in the undercooling experiments available at present. We also present calculations using the classical droplet model [classical nucleation theory (CNT)] and a phenomenological diffuse interface theory (DIT). While the predictions of the CNT with a purely entropic interfacial free energy underestimate the critical undercooling, the DIT results appear to be in a reasonable agreement with the PFT predictions.  相似文献   

14.
We present an overview of the current status of experimental, theoretical, molecular dynamics (MD), and density functional theory (DFT) studies of argon vapor-to-liquid nucleation. Since the experimental temperature-supersaturation domain does not overlap with the corresponding MD and DFT domains, separate comparisons have been made: theory versus experiment and theory versus MD and DFT. Three general theoretical models are discussed: Classical nucleation theory (CNT), mean-field kinetic nucleation theory (MKNT), and extended modified liquid drop model-dynamical nucleation theory (EMLD-DNT). The comparisons are carried out for the area below the MKNT pseudospinodal line. The agreement for the nucleation rate between the nonclassical models and the MD simulations is very good--within 1-2 orders of magnitude--while the CNT deviates from simulations by about 3-5 orders of magnitude. Perfect agreement is demonstrated between DFT results and predictions of MKNT (within one order of magnitude), whereas CNT and EMLD-DNT show approximately the same deviation of about 3-5 orders of magnitude. At the same time the agreement between all theoretical models and experiment remains poor--4-8 orders of magnitude for MKNT, 12-14 orders for EMLD-DNT, and up to 26 orders for CNT. We discuss possible reasons for this discrepancy and the ways to carry out experiment and simulations within the common temperature-supersaturation domain in order to produce a unified picture of argon nucleation.  相似文献   

15.
Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach. Simulation results are compared to the classical nucleation theory (CNT) as well as the modification of Laaksonen, Ford, and Kulmala (LFK) which introduces a size dependence of the specific surface energy. CNT describes the nucleation of ethane and carbon dioxide excellently over the entire studied temperature range, whereas LFK provides a better approach to methane at low temperatures.  相似文献   

16.
We performed molecular dynamics (MD) simulations of nucleation from vapor at temperatures below the triple point for systems consisting of 10(4)-10(5) Lennard-Jones (L-J) type molecules in order to test nucleation theories at relatively low temperatures. Simulations are performed for a wide range of initial supersaturation ratio (S(0) ? 10-10(8)) and temperature (kT = 0.2-0.6ε), where ε and k are the depth of the L-J potential and the Boltzmann constant, respectively. Clusters are nucleated as supercooled liquid droplets because of their small size. Crystallization of the supercooled liquid nuclei is observed after their growth slows. The classical nucleation theory (CNT) significantly underestimates the nucleation rates (or the number density of critical clusters) in the low-T region. The semi-phenomenological (SP) model, which corrects the CNT prediction of the formation energy of clusters using the second virial coefficient of a vapor, reproduces the nucleation rate and the cluster size distributions with good accuracy in the low-T region, as well as in the higher-T cases considered in our previous study. The sticking probability of vapor molecules onto the clusters is also obtained in the present MD simulations. Using the obtained values of sticking probability in the SP model, we can further refine the accuracy of the SP model.  相似文献   

17.
18.
We report six nucleation rate isotherms of vapor-liquid nucleation of Lennard-Jones argon from molecular dynamics simulations. The isotherms span three orders of magnitude in nucleation rates, 10(23)相似文献   

19.
The homogeneous nucleation rates for n-nonane-n-propanol vapor mixtures have been calculated as a function of vapor-phase activities at 230 K using the classical nucleation theory (CNT) with both rigorous and approximate kinetic prefactors and compared to previously reported experimental data. The predicted nucleation rates resemble qualitatively the experimental results for low n-nonane gas phase activity. On the high nonane activity side the theoretical nucleation rates are about three orders of magnitude lower than the experimental data when using the CNT with the approximate kinetics. The accurate kinetics improves the situation by reducing the difference between theory and experiments to two orders of magnitude. Besides the nucleation rate comparison and the experimental and predicted onset activities, the critical cluster composition is presented. The total number of molecules is approximated by CNT with reasonable accuracy. Overall, the classical nucleation theory with rigorous kinetic prefactor seems to perform better. The thermodynamic parameters needed to calculate the nucleation rates are revised extensively. Up-to-date estimates of liquid phase activities using universal functional activity coefficient Dortmund method are presented together with the experimental values of surface tensions obtained in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号