首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of electron excitations and luminescence of LiB3O5 (LBO) single crystals was studied using low-temperature luminescence vacuum ultraviolet spectroscopy with a subnanosecond time resolution under photoexcitation with synchrotron radiation. The kinetics of the photoluminescence (PL) decay, the time-resolved PL emission spectra, and the time-resolved PL excitation spectra of LBO were measured at 7 and 290 K, respectively. The PL emission bands peaking at 2.7 eV and 3.3 eV were attributed to the radiative transitions of electronic excitations connected with lattice defects of LBO. The intrinsic PL emission bands at 3.6 and 4.2 eV were associated with the radiative annihilation of two kinds of self-trapped electron excitations in LBO. The processes responsible for the formation of localized electron excitations in LBO were discussed and compared with those taking place in wide-gap oxides.  相似文献   

2.
Low-temperature photoluminescence (PL) of unactivated KDP crystals under selective synchrotron excitation is for the first time measured with subnanosecond time resolution. Time-resolved PL (2–6 eV) and PL excitation (4–35 eV) spectra, as well as PL kinetics, are measured at 7 K. From the acquired experimental data, luminescent bands related to intrinsic defects of the KDP lattice are identified; in particular, the long-wave band at 2.6 eV is assigned to L defects, and the band at 3.5–3.6 eV is attributed to D defects. An efficient energy transfer over the hydrogen sublattice is shown to take place in KDP at low temperatures. It results in the efficient excitation of L and D center photoluminescence in the fundamental absorption region, at electron transitions to the bottom levels of the conduction band, corresponding to the states of the hydrogen atom. The band gap E g is evaluated to be 8.0–8.8 eV.  相似文献   

3.
This paper reports on a study of the dynamics of electronic excitations in KBe2BO3F2 (KBBF) crystals by low-temperature luminescent vacuum ultraviolet spectroscopy with nanosecond time resolution under photoexcitation by synchrotron radiation. The first data have been obtained on the kinetics of photoluminescence (PL) decay, time-resolved PL spectra, time-resolved PL excitation spectra, and reflection spectra at 7 K; the estimation has been performed for the band gap E g = 10.6−11.0 eV; the predominantly excitonic mechanism for PL excitation at 3.88 eV has been identified; and defect luminescence bands at 3.03 and 4.30 eV have been revealed. The channels of generation and decay of electronic excitations in KBBF crystals have been discussed.  相似文献   

4.
This paper reports on the results of the comprehensive study of the dynamics of electronic excitations in K2Al2B2O7 (KABO) crystals, obtained by low-temperature luminescence vacuum ultraviolet spectroscopy with nanosecond time resolution upon photoexcitation by synchrotron radiation. For the first time, the data have been obtained on the photoluminescence (PL) decay kinetics, PL spectra with time resolution, PL excitation spectra with time resolution, and reflection spectra at 7 K; the intrinsic nature of PL at 3.28 eV has been established; luminescence bands of defects have been separated in the visible and ultraviolet spectral regions; an intense long-wavelength PL band has been detected at 1.72 eV; channels of the formation and decay of electronic excitations in K2Al2B2O7 crystals have been discussed.  相似文献   

5.
A complex investigation of the dynamics of electronic excitations in potassium dihydrophosphate (KDP) crystals is performed by low-temperature time-resolved vacuum ultraviolet optical luminescence spectroscopy with subnanosecond time resolution and with selective photoexcitation by synchrotron radiation. For KDP crystals, data on the kinetics of the photoluminescence (PL) decay, time-resolved PL spectra (2–6.2 eV), and time-resolved excitation PL spectra (4–24 eV) at 10 K were obtained for the first time. The intrinsic character of the PL of KDP in the vicinity of 5.2 eV, which is caused by the radiative annihilation of self-trapped excitons (STEs), is ascertained; σ and π bands in the luminescence spectra of the STEs, which are due to singlet and triplet radiative transitions, are resolved; and the shift of the σ band with respect to the π band in the spectra of the STEs is explained.  相似文献   

6.
The paper presents the results of a complex investigation into the dynamics of electronic excitations in the CsLiB6O10 crystal (CLBO) by low-temperature luminescence VUV spectroscopy with subnanosecond time resolution under photoexcitation by synchrotron radiation. Strong broad-band low-temperature photoluminescence (PL) of the CLBO crystal has been revealed. Data on the PL decay kinetics, time-resolved PL and PL excitation spectra, and reflectance spectra at 9.3 and 295 K are obtained. It is shown that the intrinsic PL of CsLiB6O10 in the 3.5-eV range is caused by radiative annihilation of self-trapped excitons. The channels of creation and decay of relaxed and unrelaxed excitons in cesium lithium borate are discussed. The band gap of CLBO is estimated as E g≈8.5 eV. A monotonic increase in the excitation efficiency of intrinsic CLBO luminescence at exciting photon energies above 19 eV is identified as the photon multiplication process.  相似文献   

7.
The electronic and crystal structures of SrMgF4 single crystals grown by the Bridgman method have been investigated. The undoped SrMgF4 single crystals have been studied using low-temperature (T = 10 K) time-resolved fluorescence optical and vacuum ultraviolet spectroscopy under selective excitation by synchrotron radiation (3.7–36.0 eV). Based on the measured reflectivity spectra and calculated spectra of the optical constants, the following parameters of the electronic structure have been determined for the first time: the minimum energy of interband transitions E g = 12.55 eV, the position of the first exciton peak E n = 1 = 11.37 eV, the position of the maximum of the “exciton” luminescence excitation band at 10.7 eV, and the position of the fundamental absorption edge at 10.3 eV. It has been found that photoluminescence excitation occurs predominantly in the region of the low-energy fundamental absorption edge of the crystal and that, at energies above E g , the energy transfer from the matrix to luminescence centers is inefficient. The exciton migration is the main excitation channel of photoluminescence bands at 2.6–3.3 and 3.3–4.2 eV. The direct photoexcitation is characteristic of photoluminescence from defects at 1.8–2.6 and 4.2–5.5 eV.  相似文献   

8.
Results are reported of a coordinated investigation of the dynamics of electronic excitations in LiB3O5 and Li2B4O7 crystals by low-temperature luminescence VUV spectroscopy performed with subnano-second resolution under synchrotron photoexcitation. Data on the photoluminescence (PL) decay kinetics, time-resolved PL and PL excitation spectra, and reflectance spectra obtained at 295 and 9.6 K are reported for the first time; the PL of the borates in the 3.5-eV region caused by radiative annihilation of self-trapped excitons (STE) has been established to have an intrinsic nature; the σ and π STE luminescence bands originating from singlet and triplet radiative transitions have been isolated; the shift of the STE σ band relative to the π band has been interpreted; the LBO recombination luminescence band has been isolated; and the creation and decay channels of relaxed and unrelaxed excitons in lithium borates are discussed.  相似文献   

9.
A complex investigation of the dynamics of electronic excitations in nonlinear optical crystals of ammonium dihydrophosphate NH4H2PO4 was performed using low-temperature vacuum UV luminescence spectroscopy with time resolution upon selective photoexcitation by synchrotron radiation. Data on the photoluminescence decay kinetics, time-resolved photoluminescence spectra (2–6.2 eV), and time-resolved photoluminescence excitation spectra (4–24 eV) were obtained for the first time for NH4H2PO4 crystals at 8 K. It is ascertained that the photoluminescence of NH4H2PO4 crystals in the vicinity of 4.7 eV has intrinsic character due to the radiative annihilation of self-trapped excitons. Possible channels of generation and decay of relaxed and unrelaxed electronic excitations in NH4H2PO4 crystals are discussed.  相似文献   

10.
We report the results of complex study of luminescence and dynamics of electronic excitations in K2Al2B2O7 (KABO) crystals obtained using low-temperature luminescence-optical vacuum ultraviolet spectroscopy with sub-nanosecond time resolution under selective photoexcitation with synchrotron radiation. The paper discusses the decay kinetics of photoluminescence (PL), the time-resolved PL emission spectra (1.2–6.2 eV), the time-resolved PL excitation spectra and the reflection spectra (3.7–21 eV) measured at 7 K. On the basis of the obtained results three absorption peaks at 4.7, 5.8 and 6.5 eV were detected and assigned to charge-transfer absorption from O2? to Fe3+ ions; the intrinsic PL band at 3.28 eV was revealed and attributed to radiative annihilation of self-trapped excitons, the defect luminescence bands at 2.68 and 3.54 eV were separated; the strong PL band at 1.72 eV was revealed and attributed to a radiative transition in Fe3+ ion.  相似文献   

11.
Beryllium oxide crystals are studied by time-resolved optical and luminescence vacuum-UV spectroscopy. The low-temperature luminescence spectra and the luminescence decay kinetics (2.5–10 eV, 1–500 ns) upon selective photoexcitation, and also the luminescence excitation and reflectivity spectra (8–35 eV), are analyzed for BeO crystals with the optic axis aligned parallel and perpendicular to the electric vector of exciting polarized synchrotron radiation. It is found that the radiative relaxation of electronic excitations proceeds through a large number of channels. The excited states of self-trapped excitons are characterized by different multiplicity depending on the excitation energy and the sample orientation.  相似文献   

12.
The photoluminescence (PL) emission and excitation spectra of undoped and doped with rare-earth (RE = Eu, Tb) ions K3Bi5(PO4)6 and K2Bi(PO4)(MoO4) crystals are studied in 3.7–14 eV region of the excitation photon energies at T = 8 and 300 K. The mechanisms of the host-related and RE-related luminescence in 3.7–7 eV region of the excitation photon energies are revealed in comparative analysis of the PL spectra of studied compounds. It is assumed that the excitation mechanisms of host luminescence of K3Bi5(PO4)6 and K2Bi(PO4) (MoO4) crystals below 4.8 eV are related to Bi3+ ions in oxygen surrounding. An efficient energy transfer from the Bi3+-related luminescence centers to the emitting RE centers exists in crystals with low concentration of the RE dopants (1%). The PL excitation spectra of K3Bi5(PO4)6 crystals with high concentration of Eu dopants are formed by O – Eu CT transitions.  相似文献   

13.
The results of a study of time-resolved photoluminescence (PL) and energy transfer in both pure and doped with Ce3+ ions SrAlF5 (SAF) single crystals are presented. The time-resolved and steady-state PL spectra in the energy range of 1.5–6.0 eV, the PL excitation spectra and the reflectivity in the energy range of 3.7–21 eV, as well as the PL decay kinetics were measured at 8.8 and 295 K. The lattice defects were revealed in the low temperature PL spectra (emission bands at 2.9 and 4.5 eV) in the undoped SAF crystals. The luminescence spectra of the doped Ce3+:SAF crystals demonstrate a new selective emission bands in the range of 3.7–4.5 eV with the exponential decay kinetics (τ ≈ 60 ns at X-ray excitation). These bands correspond to the d-f transitions in Ce3+ ions, which occupy nonequivalent sites in the crystal lattice.  相似文献   

14.
The photoluminescence (PL) of ZrP2O7 and KZr2(PO4)3 phosphate crystalline micro-powders grown by spontaneous crystallization method is studied under vacuum ultra-violet (VUV) synchrotron radiation excitations (4–20 eV region of excitation photon energies) in 8–300 K temperature region. The electronic structures (partial densities of states) and optical absorbance spectra of the crystals are calculated by the Full-Potential Linear Augmented Plane Wave Method. Both phosphate crystals reveal PL emission band in the UV spectral region peaking near 300 and 295 nm for ZrP2O7 and KZr2(PO4)3 respectively. The spectral profile of the band weakly depends on temperature. The excitation spectra of the UV emission in each crystal contain intensive excitation band peaking at 189 and 182 nm for ZrP2O7 and KZr2(PO4)3 respectively. The excitation band of the UV emission is related to band-to-band electronic transitions with charge transfer from O 2p to Zr 4d states. The energy band gaps Eg of ZrP2O7 and KZr2(PO4)3 are estimated as 6.7 and 6.6 eV respectively.  相似文献   

15.
This study has been carried out using synchrotron radiation, time-resolved luminescence ultraviolet and vacuum ultraviolet spectroscopy, optical absorption spectroscopy, and thermal activation spectroscopy. It has been found that, in scintillation spectrometric crystals LaBr3: Ce,Hf characterized by a low hygroscopicity, along with Ce3+ centers in regular lattice sites, there are Ce3+ centers located in the vicinity of the defects of the crystal structure. It has also been found that the studied crystals exhibit photoluminescence (PL) of new point defects responsible for a broad band at wavelengths of 500–600 nm in the PL spectra. The minimum energy of interband transitions in LaBr3 is estimated as E g ~ 6.2 eV. The effect of multiplication of electronic excitations has been observed in the range of PL excitation energies higher than 13 eV (more than 2E g ). Thermal activation studies have revealed channels of electronic excitation energy transfer to Ce3+ impurity centers.  相似文献   

16.
N M GASANLY 《Pramana》2016,86(6):1383-1390
Photoluminescence (PL) spectra of CuIn5S8 single crystals grown by Bridgman method have been studied in the wavelength region of 720–1020 nm and in the temperature range of 10–34 K. A broad PL band centred at 861 nm (1.44 eV) was observed at T = 10 K. Variations of emission band has been studied as a function of excitation laser intensity in the 0.5– 60.2 mW cm?2 range. Radiative transitions from shallow donor level located at 17 meV below the bottom of the conduction band to the acceptor level located at 193 meV above the top of the valence band were suggested to be responsible for the observed PL band. An energy level diagram showing transitions in the band gap of the crystal has been presented.  相似文献   

17.
The time-resolved photoluminescence (PL) of LaBr3-Ce scintillation spectrometric crystals produced in Russia is measured upon excitation using synchrotron radiation with photon energies of 3.7–21 and 45–290 eV at temperatures of 295 and 7.5 K. The PL spectra and decay curves are measured for excitation in the transparency range, at the edge of fundamental absorption, at the interband transitions, and in the range of inner-shell absorption. It is demonstrated that the PL yield is not proportional to the excitation energy, and that the PL decay curves are modified in the range of photoionization of the 3d (Br) and 4d (La) inner shells and, especially, in the range of giant resonance.  相似文献   

18.

The time-resolved luminescence spectra in energy region of 2.0-6.0 v eV, as well as the excitation spectra (4-35 v eV), reflectivity and the decay kinetics were studied at T =10 v K and 295 v K using selective vacuum ultraviolet excitation in nominally pure crystals as well as crystals with intrinsic defects and radiation defects induced by fast electrons.  相似文献   

19.
Spectroscopy of α, θ, and γ phases of high‐purity ultraporous alumina has been studied at cryogenic temperatures of 7 K in the near‐IR–VUV range of spectra with synchrotron radiation excitation. The UV photoluminescence (PL) spectra are dominated by optical transitions of self‐trapped excitons, while the PL excitation spectra are assigned to free excitons and interband transitions. The analysis of PL excitation spectra indicates a tendency to fundamental bandgap narrowing in order of 9.36 eV (α) to 7.60 eV (θ) and 6.85 eV (γ). Structural defects related to oxygen vacancies are responsible for the visible F+/F transitions decrease in order γ > θ > α. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Photoluminescence (PL) properties of Eu-doped ZnO (ZnO:Eu) grown by a sputtering-assisted metalorganic chemical vapor deposition technique were investigated. In PL measurements at 300 K, the samples annealed at 600 °C for 30 min showed clear red-emission lines due to the intra-4f shell transition of 5D07FJ (J=0–4) in Eu3+. In photoluminescence excitation (PLE) spectra, the PL was observed under the high-energy excitation above the band-gap energy of ZnO (indirect excitation) and the low-energy excitation resonant to the energy levels of 7F05D3 and 7F05D2 transitions in Eu3+ (direct excitation). The PL lifetime under the indirect excitation was shorter than that under the direct excitations. These PL properties revealed that the energy transfer from ZnO host to Eu3+ was accompanied under indirect excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号