首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the functional-coefficient partially linear regression (FCPLR) model is proposed by combining nonparametric and functional-coefficient regression (FCR) model. It includes the FCR model and the nonparametric regression (NPR) model as its special cases. It is also a generalization of the partially linear regression (PLR) model obtained by replacing the parameters in the PLR model with some functions of the covariates. The local linear technique and the integrated method are employed to give initial estimators of all functions in the FCPLR model. These initial estimators are asymptotically normal. The initial estimator of the constant part function shares the same bias as the local linear estimator of this function in the univariate nonparametric model, but the variance of the former is bigger than that of the latter. Similarly, initial estimators of every coefficient function share the same bias as the local linear estimates in the univariate FCR model, but the variance of the former is bigger than that of the latter. To decrease the variance of the initial estimates, a one-step back-fitting technique is used to obtain the improved estimators of all functions. The improved estimator of the constant part function has the same asymptotic normality property as the local linear nonparametric regression for univariate data. The improved estimators of the coefficient functions have the same asymptotic normality properties as the local linear estimates in FCR model. The bandwidths and the smoothing variables are selected by a data-driven method. Both simulated and real data examples related to nonlinear time series modeling are used to illustrate the applications of the FCPLR model.  相似文献   

2.
This paper proposes a technique [termed censored average derivative estimation (CADE)] for studying estimation of the unknown regression function in nonparametric censored regression models with randomly censored samples. The CADE procedure involves three stages: firstly-transform the censored data into synthetic data or pseudo-responses using the inverse probability censoring weighted (IPCW) technique, secondly estimate the average derivatives of the regression function, and finally approximate the unknown regression function by an estimator of univariate regression using techniques for one-dimensional nonparametric censored regression. The CADE provides an easily implemented methodology for modelling the association between the response and a set of predictor variables when data are randomly censored. It also provides a technique for “dimension reduction” in nonparametric censored regression models. The average derivative estimator is shown to be root-n consistent and asymptotically normal. The estimator of the unknown regression function is a local linear kernel regression estimator and is shown to converge at the optimal one-dimensional nonparametric rate. Monte Carlo experiments show that the proposed estimators work quite well.  相似文献   

3.
对于纵向数据下半参数回归模型,基于广义估计方程和一般权函数方法构造了模型中参数分量和非参数分量的估计.在适当的条件下证明了参数估计量具有渐近正态性,并得到了非参数回归函数估计量的最优收敛速度.通过模拟研究说明了所提出的估计量在有限样本下的精确性.  相似文献   

4.
Hazard function estimation is an important part of survival analysis. Interest often centers on estimating the hazard function associated with a particular cause of death. We propose three nonparametric kernel estimators for the hazard function, all of which are appropriate when death times are subject to random censorship and censoring indicators can be missing at random. Specifically, we present a regression surrogate estimator, an imputation estimator, and an inverse probability weighted estimator. All three estimators are uniformly strongly consistent and asymptotically normal. We derive asymptotic representations of the mean squared error and the mean integrated squared error for these estimators and we discuss a data-driven bandwidth selection method. A simulation study, conducted to assess finite sample behavior, demonstrates that the proposed hazard estimators perform relatively well. We illustrate our methods with an analysis of some vascular disease data.  相似文献   

5.
I. Gijbels  L. Peng 《Extremes》2000,3(3):251-277
This paper deals with nonparametric estimation of the boundary curve of the support of a bivariate density function. This estimation problem arises in various contexts, such as for example scatterpoint image analysis and frontier estimation in econometrics. The setup in this paper is a general one, allowing the bivariate density function to be infinite, bounded away from zero or zero at the boundary. Two estimators for the boundary curve are introduced, both based on order statistics. The asymptotic distribution of the estimators and their rate of convergence are established. Via a comparison of the rates of convergence we recommend which estimator to use in a particular situation. Both estimators can be used as an initial estimator in a two-stage procedure, designed for getting a better estimation. Simulation studies demonstrate the finite-sample behavior of the estimators and the proposed two-stage procedure. We illustrate the procedure on a data set on American electric utility companies.  相似文献   

6.

Many methods have been developed for analyzing survival data which are commonly right-censored. These methods, however, are challenged by complex features pertinent to the data collection as well as the nature of data themselves. Typically, biased samples caused by left-truncation (or length-biased sampling) and measurement error often accompany survival analysis. While such data frequently arise in practice, little work has been available to simultaneously address these features. In this paper, we explore valid inference methods for handling left-truncated and right-censored survival data with measurement error under the widely used Cox model. We first exploit a flexible estimator for the survival model parameters which does not require specification of the baseline hazard function. To improve the efficiency, we further develop an augmented nonparametric maximum likelihood estimator. We establish asymptotic results and examine the efficiency and robustness issues for the proposed estimators. The proposed methods enjoy appealing features that the distributions of the covariates and of the truncation times are left unspecified. Numerical studies are reported to assess the finite sample performance of the proposed methods.

  相似文献   

7.
This paper develops a robust and efficient estimation procedure for quantile partially linear additive models with longitudinal data, where the nonparametric components are approximated by B spline basis functions. The proposed approach can incorporate the correlation structure between repeated measures to improve estimation efficiency. Moreover, the new method is empirically shown to be much more efficient and robust than the popular generalized estimating equations method for non-normal correlated random errors. However, the proposed estimating functions are non-smooth and non-convex. In order to reduce computational burdens, we apply the induced smoothing method for fast and accurate computation of the parameter estimates and its asymptotic covariance. Under some regularity conditions, we establish the asymptotically normal distribution of the estimators for the parametric components and the convergence rate of the estimators for the nonparametric functions. Furthermore, a variable selection procedure based on smooth-threshold estimating equations is developed to simultaneously identify non-zero parametric and nonparametric components. Finally, simulation studies have been conducted to evaluate the finite sample performance of the proposed method, and a real data example is analyzed to illustrate the application of the proposed method.  相似文献   

8.
Abstract

We consider the kernel estimator of conditional density and derive its asymptotic bias, variance, and mean-square error. Optimal bandwidths (with respect to integrated mean-square error) are found and it is shown that the convergence rate of the density estimator is order n –2/3. We also note that the conditional mean function obtained from the estimator is equivalent to a kernel smoother. Given the undesirable bias properties of kernel smoothers, we seek a modified conditional density estimator that has mean equivalent to some other nonparametric regression smoother with better bias properties. It is also shown that our modified estimator has smaller mean square error than the standard estimator in some commonly occurring situations. Finally, three graphical methods for visualizing conditional density estimators are discussed and applied to a data set consisting of maximum daily temperatures in Melbourne, Australia.  相似文献   

9.
Based on the double penalized estimation method,a new variable selection procedure is proposed for partially linear models with longitudinal data.The proposed procedure can avoid the effects of the nonparametric estimator on the variable selection for the parameters components.Under some regularity conditions,the rate of convergence and asymptotic normality of the resulting estimators are established.In addition,to improve efficiency for regression coefficients,the estimation of the working covariance matrix is involved in the proposed iterative algorithm.Some simulation studies are carried out to demonstrate that the proposed method performs well.  相似文献   

10.
We propose and implement a density estimation procedure which begins by turning density estimation into a nonparametric regression problem. This regression problem is created by binning the original observations into many small size bins, and by then applying a suitable form of root transformation to the binned data counts. In principle many common nonparametric regression estimators could then be applied to the transformed data. We propose use of a wavelet block thresholding estimator in this paper. Finally, the estimated regression function is un-rooted by squaring and normalizing. The density estimation procedure achieves simultaneously three objectives: computational efficiency, adaptivity, and spatial adaptivity. A numerical example and a practical data example are discussed to illustrate and explain the use of this procedure. Theoretically it is shown that the estimator simultaneously attains the optimal rate of convergence over a wide range of the Besov classes. The estimator also automatically adapts to the local smoothness of the underlying function, and attains the local adaptive minimax rate for estimating functions at a point. There are three key steps in the technical argument: Poissonization, quantile coupling, and oracle risk bound for block thresholding in the non-Gaussian setting. Some of the technical results may be of independent interest.  相似文献   

11.
This paper proposes a method for estimation of a class of partially linear single-index models with randomly censored samples. The method provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored. It presents a technique for “dimension reduction” in semiparametric censored regression models and generalizes the existing accelerated failure-time models for survival analysis. The estimation procedure involves three stages: first, transform the censored data into synthetic data or pseudo-responses unbiasedly; second, obtain quasi-likelihood estimates of the regression coefficients in both linear and single-index components by an iteratively algorithm; finally, estimate the unknown nonparametric regression function using techniques for univariate censored nonparametric regression. The estimators for the regression coefficients are shown to be jointly root-n consistent and asymptotically normal. In addition, the estimator for the unknown regression function is a local linear kernel regression estimator and can be estimated with the same efficiency as all the parameters are known. Monte Carlo simulations are conducted to illustrate the proposed methodology.  相似文献   

12.

Variable selection for multivariate nonparametric regression models usually involves parameterized approximation for nonparametric functions in the objective function. However, this parameterized approximation often increases the number of parameters significantly, leading to the “curse of dimensionality” and inaccurate estimation. In this paper, we propose a novel and easily implemented approach to do variable selection in nonparametric models without parameterized approximation, enabling selection consistency to be achieved. The proposed method is applied to do variable selection for additive models. A two-stage procedure with selection and adaptive estimation is proposed, and the properties of this method are investigated. This two-stage algorithm is adaptive to the smoothness of the underlying components, and the estimation consistency can reach a parametric rate if the underlying model is really parametric. Simulation studies are conducted to examine the performance of the proposed method. Furthermore, a real data example is analyzed for illustration.

  相似文献   

13.
We study a spline-based likelihood method for the partly linear model with monotonicity constraints. We use monotone B-splines to approximate the monotone nonparametric function and apply the generalized Rosen algorithm to compute the estimators jointly. We show that the spline estimator of the nonparametric component achieves the possible optimal rate of convergence under the smooth assumption and that the estimator of the regression parameter is asymptotically normal and efficient. Moreover, a spline-based semiparametric likelihood ratio test is established to make inference of the regression parameter. Also an observed profile information method to consistently estimate the standard error of the spline estimator of the regression parameter is proposed. A simulation study is conducted to evaluate the finite sample performance of the proposed method. The method is illustrated by an air pollution study.  相似文献   

14.
One of the main objectives of this article is to derive efficient nonparametric estimators for an unknown density fX. It is well known that the ordinary kernel density estimator has, despite several good properties, some serious drawbacks. For example, it suffers from boundary bias and it also exhibits spurious bumps in the tails. We propose a semiparametric transformation kernel density estimator to overcome these defects. It is based on a new semiparametric transformation function that transforms data to normality. A generalized bandwidth adaptation procedure is also developed. It is found that the newly proposed semiparametric transformation kernel density estimator performs well for unimodal, low, and high kurtosis densities. Moreover, it detects and estimates densities with excessive curvature (e.g., modes and valleys) more effectively than existing procedures. In conclusion, practical examples based on real-life data are presented.  相似文献   

15.

This paper is devoted to the nonparametric estimation of the derivative of the regression function in a nonparametric regression model. We implement a very efficient and easy to handle statistical procedure based on the derivative of the recursive Nadaraya–Watson estimator. We establish the almost sure convergence as well as the asymptotic normality for our estimates. We also illustrate our nonparametric estimation procedure on simulated data and real life data associated with sea shores water quality and valvometry.

  相似文献   

16.
Summary We introduce nonparametric estimators of the autocovariance of a stationary random field. One of our estimators has the property that it is itself an autocovatiance. This feature enables the estimator to be used as the basis of simulation studies such as those which are necessary when constructing bootstrap confidence intervals for unknown parameters. Unlike estimators proposed recently by other authors, our own do not require assumptions such as isotropy or monotonicity. Indeed, like nonparametric function estimators considered more widely in the context of curve estimation, our approach demands only smoothness and tail conditions on the underlying curve or surface (here, the autocovariance), and moment and mixing conditions on the random field. We show that by imposing the condition that the estimator be a covariance function we actually reduce the numerical value of integrated squared error.  相似文献   

17.
In this study, a new nonparametric approach using Bernstein copula approximation is proposed to estimate Pickands dependence function. New data points obtained with Bernstein copula approximation serve to estimate the unknown Pickands dependence function. Kernel regression method is then used to derive an intrinsic estimator satisfying the convexity. Some extreme-value copula models are used to measure the performance of the estimator by a comprehensive simulation study. Also, a real-data example is illustrated. The proposed Pickands estimator provides a flexible way to have a better fit and has a better performance than the conventional estimators.  相似文献   

18.
Abstract

This article proposes a method for nonparametric estimation of hazard rates as a function of time and possibly multiple covariates. The method is based on dividing the time axis into intervals, and calculating number of event and follow-up time contributions from the different intervals. The number of event and follow-up time data are then separately smoothed on time and the covariates, and the hazard rate estimators obtained by taking the ratio. Pointwise consistency and asymptotic normality are shown for the hazard rate estimators for a certain class of smoothers, which includes some standard approaches to locally weighted regression and kernel regression. It is shown through simulation that a variance estimator based on this asymptotic distribution is reasonably reliable in practice. The problem of how to select the smoothing parameter is considered, but a satisfactory resolution to this problem has not been identified. The method is illustrated using data from several breast cancer clinical trials.  相似文献   

19.
非参数核回归方法近年来已被用于纵向数据的分析(Lin和Carroll,2000).一个颇具争议性的问题是在非参数核回归中是否需要考虑纵向数据间的相关性.Lin和Carroll (2000)证明了基于独立性(即忽略相关性)的核估计在一类核GEE估计量中是(渐近)最有效的.基于混合效应模型方法作者提出了一个不同的核估计类,它自然而有效地结合了纵向数据的相关结构.估计量达到了与Lin和Carroll的估计量相同的渐近有效性,且在有限样本情形下表现更好.由此方法可以很容易地获得对于总体和个体的非参数曲线估计.所提出的估计量具有较好的统计性质,且实施方便,从而对实际工作者具有较大的吸引力.  相似文献   

20.
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ( ).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号