首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption and protonation of CO2 on the (110) and (100) surfaces of gamma-Al2O3 have been studied using density functional theory slab calculations. On the dry (110) and (100) surfaces, the O-Al bridge sites were found to be energetically favorable for CO2 adsorption. The adsorbed CO2 was bound in a bidentate configuration across the O-Al bridge sites, forming a carbonate species. The strongest binding with an adsorption energy of 0.80 eV occurs at the O3c-Al5c bridge site of the (100) surface. Dissociation of water across the O-Al bridge sites resulted in partially hydroxylated surfaces, and the dissociation is energetically favorable on both surfaces. Water dissociation on the (110) surface has a barrier of 0.42 eV, but the same process on the (100) surface has no barrier with respect to the isolated water molecule. On the partially hydroxylated gamma-Al2O3 surfaces, a bicarbonate species was formed by protonating the carbonate species with the protons from neighboring hydroxyl groups. The energy difference between the bicarbonate species and the coadsorbed bidentate carbonate species and hydroxyls is only 0.04 eV on the (110) surface, but the difference reaches 0.97 eV on the (100) surface. The activation barrier for forming the bicarbonate species on the (100) surface, 0.42 eV, is also lower than that on the (110) surface (0.53 eV).  相似文献   

2.
B3LYP/LANL2DZ and B3LYP/6-31G(d)-restricted and -unrestricted calculations are employed to calculate energies and adsorption forms of formaldehyde adsorbed on planar and on tetrahedral Pd4 clusters and on a Pd4 cluster supported on Al10O15. Formaldehyde adsorbs on planar Pd4 in the eta(2)(C,O)-di-sigma adsorption mode, while on tetrahedral Pd4, it adsorbs in the eta(2)(C,O)-pi adsorption mode. The adsorption energy on planar Pd4 is -21.4 kcal x mol(-1), whereas for the tetrahedral Pd4 cluster, the adsorption energy is -13.2 kcal x mol(-1). The latter value is close to experimental findings (-12 to -14 kcal x mol(-1)). Adsorption of formaldehyde on Pd4 supported on an Al10O15 cluster leads essentially to the same result as that found for adsorption on the tetrahedral Pd4 cluster. Charge density analysis for the interaction between formaldehyde and the Pd4 clusters indicates strong backdonation in the eta(2) adsorption mode, leading to positive charge on the Pd4 cluster. NBO analysis shows that the highly coordinated octahedral aluminum atoms of Al10O15 donate electron density to the supported Pd4 cluster, while tetrahedral aluminum atoms with lower coordination number have acidic nature and therefore act as electron acceptors.  相似文献   

3.
Insufficient understanding of the interactions of reactive phases (e.g., Fe and Al oxides) with minerals, other reactive phases and sorbing species has made predicting and modeling metal sorption on natural sediment surfaces difficult. This work develops a method to create mixed Fe/Al planar oxide surfaces by coating well-characterized planar gamma-Al2O3 with ferric iron. The objective is to closely control the Fe/Al ratio as well as the distribution of Fe on the planar surface. Effects of starting Fe(III) concentration, reaction time and number of coating sequences were examined using XPS and ToF-SIMS. No observable trend was seen in Fe/Al ratios by varying the starting Fe(III) concentration or reaction time. For both 4- and 14-day reactions, lower concentrations of Fe(III) produced oxide phases with a homogeneous distribution of Fe at the surface as detected by ToF-SIMS. ToF-SIMS Fe elemental maps of the oxide phases resulting from the highest Fe(III) concentration showed areas of localized Fe deposition. A sequential coating procedure allowed for a closer control of the concentration and spatial distribution of Fe(III) in the resulting oxide phase. This work provides methodology that can be used to create Fe/Al oxide phases whose Fe/Al content can be controlled for use in subsequent sorption studies to better understand the effects of mixed phase oxides on metal ion uptake.  相似文献   

4.
Surface diffusion of a water monomer is not as simple as previously imagined. Using state-of-the-art density functional theory, we have obtained important molecular insights relating to the elementary steps of atop-to-atop diffusion of a water monomer. We provide theoretical evidence for an anisotropic effect of rotation-jump coupling on Pd{100}; the preference of H-down tumbling motion along the nearest-neighbor direction of the square lattice was identified. The tumbling motion is attributed to quantum-tunneling-assisted diffusion, while the next-neighbor motion on the square lattice as well as the nearest-neighbor motion on Pd{111} favors molecular-axis-guided classical hopping motion whenever possible. The physical origin of the classical diffusions is discussed in the framework of the electronic structure. Our study gives useful direction for further studies on molecular couplings in the elementary steps.  相似文献   

5.
The dispersion of thoria on the surface of gamma-Al2O3 and the surface properties of ThO2/gamma-Al2O3 samples, as well as the influence of the loading amount of thoria on the reduction behavior of copper oxide species, have been studied using XRD, XPS, FTIR, and TPR. The results indicate that the dispersion capacity of thoria, like that of ceria, is much lower than for two other tetravalent metal oxides, zirconia and titania, and the surface adsorption amount of the carbonyl compound and H2O slightly increases with increasing thoria loading. The different thoria loadings can influence the reduction behavior of the dispersed copper oxide by comparing the TPR results of CuO/ThO2/gamma-Al2O3 samples. In addition, the lower dispersion capacities of thoria and ceria on gamma-Al2O3 are tentatively discussed by considering the structural stability of the two oxides.  相似文献   

6.
The effect of sodium hydroxide on the-liquid phase hydrodechlorination (LPHDC) of polychlorinated dibenzo- p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) over 2% Pd/gamma-Al 2O 3 was evaluated. Reactions were carried out using 2-propanol both as a hydrogen donor and as a solvent. Fresh and used catalyst samples were characterized by BET, hydrogen chemisorption, TEM/EDS, XPS, and TPR. When the reaction mixture contained no NaOH, active-phase leaching and Pd-C formation were observed even after 10 min of reaction. Therefore, sodium hydroxide appears to be required to maintain surface metal clusters on the support and avoid binding of carbon species to the active metal. On the other hand, excess NaOH in the reaction mixture led to deposition of organic and inorganic solid residues on the catalyst surface, blocking the active sites. Under the conditions of this study, the addition of 30 mg of NaOH maintained the basicity of the system and diminished deposition of solid residues on the catalyst samples, and almost 100% detoxification was reached after a 3 h reaction.  相似文献   

7.
Density functional molecular cluster calculations have been used to investigate the interaction of SO(2) with defect-free TiO(2)(110) and Ti(2)O(3)(102) surfaces. Adsorbate geometries and chemisorption enthalpies have been computed and discussed. Several local minima have been found for TiO(2)(110), but only one seems to be relevant for the catalytic conversion of SO(2) to S. In agreement with experiment, the bonding of SO(2) to Ti(2)O(3)(102) is much stronger than that on TiO(2)(110). Moreover, our results are consistent with the surface oxidation and the formation of strong Ti-O and Ti-S bonds. On both substrates, the bonding is characterized by a two-way electron flow involving a donation from the SO(2) HOMO into virtual orbitals of surface Lewis acid sites (), assisted by a back-donation from surface states into the SO(2) LUMO. However, the localization of surface states and the strength of back-donation are very different on the two surfaces. On TiO(2)(110), back-donation is weaker, and it involves unsaturated bridging O atoms, while on Ti(2)O(3)(102), it implies the -based valence band maximum and significantly weakens the S-O bond.  相似文献   

8.
Hydrogen peroxide formation is achieved with remarkable productivity at ambient conditions (25 degrees C and atmospheric pressure) in aqueous medium using a heterogeneous catalytic system; formic acid is decomposed in the presence of a continuous flow of O(2) over Pd/gamma-Al(2)O(3) catalyst leading to the generation of hydrogen peroxide; the addition of a negligible amount of bromide ion improves the selectivity of the reaction.  相似文献   

9.
A new method to study the diffusion properties of molecules into porous materials using transmission IR spectroscopy is employed. A measurement of the diffusion of the 2-chloroethylethyl sulfide (2-CEES) molecule into two types of gamma-Al2O3 powder is performed, showing that the diffusion rate into subnanometer crystallite particle size gamma-Al2O3 powders (subnano-Al2O3) is higher than that into the larger crystallite particle size powder. It is shown that a surface diffusion mechanism can be used to model the diffusion process giving good agreement with the experimental results, where Dsubnano-Al2O3 is approximately 5 times larger than Dmultinano-Al2O3 at 170 K for the 2-CEES molecule.  相似文献   

10.
Despite the widespread use of gamma-Al2O3, there is still considerable disagreement over the nature of its structure due to both its poor crystallinity and differing preparation techniques during experimentation. Using density-functional theory (DFT) calculations and Rietveld simulations and refinement, the structure of three spinel-related models and a recently proposed nonspinel model were studied in reference to synchrotron X-ray powder diffraction (SXPD) patterns. The spinel-based structural models represent the structural features of gamma-Al2O3 better than the nonspinel model. The major failure of the nonspinel model is that the model cannot reproduce the SXPD reflection originating from tetrahedral aluminum. The Rietveld-refined spinel model can accurately reproduce the lattice parameters and other structural features of gamma-Al2O3, and it can generate a consistent diffraction peak at 2theta which lies between the splitting peaks of the experimental pattern that are originated from the disordered tetrahedral aluminum cations.  相似文献   

11.
First-principle density functional theory (DFT) calculations on the electronic state and structure of a [Co2+]2/gamma-Al2O3 model catalyst have been performed in relation to catalysis for unique NO-CO reactions on a Co2+ ensemble/gamma-Al2O3 catalyst. The DFT calculations reveal that a bulk structure of gamma-Al2O3 is energetically most favorable when aluminum vacancies are evenly dispersed at octahedral sites, and that the (110) plane is exposed as a top-most layer by its neutrality. Two Co2+ ions on the (110) surface are supported adjacently to each other in a tetrahedral symmetry. The calculations also demonstrate that the vacant d orbitals of the two Co2+ ions are directed toward each other, which brings about an adsorbate-adsorbate interaction between two molecules which adsorb on each of the Co2+ ions. This may be an origin of the unique aspect of Co2+ ensemble/gamma-Al2O3 catalysis.  相似文献   

12.
A novel technique for examining metal-ion interactions at the solid-water interface is introduced. Planar oxides, flat, thin coatings of uniform thickness created on a metal support, have been constructed as useful analogs for investigating metal-solid interactions under a variety of conditions. XPS and ToF/SIMS results from sorption studies at pH 6.0 show that the sorption behavior of Pb on each phase is similar with Pb binding preferentially to the bulk gamma-Al(2)O(3). This may be due to the presence of defect sites on the bulk oxides, the preferential exposure of a specific crystallographic plane in the planar oxides, or it may be an artifact of instrumental analysis. A second study examining Pb sorption to planar gamma-Al(2)O(3) under a series of increasingly complex conditions shows that our methods are able to successfully characterize sorption complexes formed in the presence of environmentally derived complexants. Results suggest that Pb is more strongly complexed by aqueous phase organic matter than sediment-bound organic material, indicating a possible control on Pb sorption in natural environments. Overall, the use of planar oxides combined with a powerful suite of spectroscopic tools provides a promising approach to better understanding metal ion sorption to natural sediment surfaces in aquatic environments.  相似文献   

13.
14.
15.
Ag on gamma-alumina is a promising catalyst for hydrocarbon selective catalytic reduction in lean-burn gasoline and diesel engines for transportation applications. Although much is known about the mechanism of NOx reduction and the various intermediates, little agreement exists on the nature of the active silver species. In the present work, aberration-corrected STEM has provided new information about the nature of Ag on alumina both as impregnated and following treatments at various temperatures with exposure to simulated exhaust gas. Ex situ techniques have provided new insights into the evolution of Ag on alumina following exposure to temperature and simulated exhaust gas.  相似文献   

16.
Cu-Pd/Al2O3 bimetallic catalysts have been characterized by XRD, TEM, and EDX techniques. The surface structure has been investigated by FT-IR spectroscopy of low-temperature adsorbed CO in the reduced and in the oxidized state. Evidence has been provided of the formation of Cu-Pd alloy nanoparticles, both of the alpha-phase (disordered fcc) and of the beta-phase (ordered CsCl-type). IR spectra suggest that Cu likely decorates the edges while Pd mostly stays at the main faces. Part of copper disperses as Cu+ on the support even after reduction. The presence of copper seems to modify strongly the sate of oxidized Pd centers in oxidized high-Pd content materials. The redox chemistry of the system, where Pd is reduced more easily than Cu, appears to be very complex.  相似文献   

17.
A computational study of the adsorption and diffusion behavior of alkali and alkaline earth metal atoms on a phosphorene monolayer is reported. Our calculations were performed within the framework of density functional theory using the Perdew–Burke–Ernzerhof functional and projector augmented wave potentials, as derived from the generalized gradient approximation. Our binding energy calculations for various potential adsorption sites showed that the site located above the center of a triangle formed by three surface phosphorus atoms is the most attractive to all adatoms. In addition, simulation of the diffusion of adatoms across the surface of the phosphorene monolayer showed that the diffusion is anisotropic, with K having the lowest diffusion barrier (0.02 eV along the zigzag pathway). To the best of our knowledge, this is the lowest diffusion barrier of any metal adatom on a single layer of phosphorene. While phosphorene exhibited significantly better adatom adsorption and diffusion than graphene, it also showed a reduced storage capacity compared to graphene, most probably due to the structural distortion induced by the oversaturated phosphorene surface. This finding strongly suggests that a phosphorene–graphene hybrid system could be employed as a promising high-capacity ion anode.  相似文献   

18.
Lii KH  Wang SL  Liao FL 《Inorganic chemistry》2004,43(8):2499-2502
Cs(2)Pd(3)(P(2)O(7))(2) (1) and Cs(2)Pd(3)(As(2)O(7))(2) (2) have been synthesized by molten flux reactions and characterized by single-crystal X-ray diffraction. The structure of 1 consists of discrete Pd(II)O(4) squares which are linked by P(2)O(7) groups via corner-sharing to generate a 3D framework containing 12-ring channels in which Cs(+) cations are located. Compound 2 adopts a 2D layer structure with the interlayer space filled with Cs(+) cations. Within a layer there are PdO(4) squares and As(2)O(7) groups fused together via corner-sharing. Adjacent layers are stacked such that strings of Pd atoms are formed. The PdO(4) squares show eclipsed and staggered stacks with alternate short and long Pd...Pd distances. The two compounds adopt considerably different structures although they have the same general formula: Cs(2)Pd(3)(X(2)O(7))(2). Compound 2 is the first palladium arsenate reported. Crystal data for 1: orthorhombic, space group Cmc2(1) (No. 36), a = 7.6061(4) A, b = 14.2820(7) A, c = 14.1840(7) A, and Z = 4. Crystal data for 2: tetragonal, space group P4/n (No. 85), a = 16.251(1) A, c = 5.9681(5) A, and Z = 4.  相似文献   

19.
A combined cluster and periodic study has been carried out to elucidate the stability of hydrated species on the vanadia/titania catalyst. First, the hydration of a V2O5 cluster was analyzed for the successive adsorption of one to four water molecules. The dimeric skeleton is found to be preserved at a low water concentration. However, after the adsorption of four water molecules on the dimer, it is found to break to generate stable monomeric OV(OH)3 units. The two moieties are related by the equation: Such OV(OH)3 units have been taken as a monomer model for the periodic representation of the vanadia/titania catalyst. On the (100) surface, the OV(OH)3 moieties are anchored by three V–O–Ti bonds to the support surface in a pyramidal arrangement. The vanadyl V=O bond is found to be very stable.  相似文献   

20.
The specific adsorption of radiolabeled sulfate and phosphate ions from perchlorate supporting electrolyte onto nano-AlOOH and nano-Fe(2)O(3) powder has been investigated. The pH dependence of the adsorption of anions onto nanopowders was compared with that of the same ions onto gamma-Al(2)O(3) and hematite. It was demonstrated that the character of the pH dependence of the adsorption is very similar in the comparable cases. It was found, however, that in contrast to the behavior of gamma-Al(2)O(3), nano-AlOOH dissolves at a significant rate at low pH values (pH<2). Thus the study of the pH dependence of the anion adsorption encounters difficulties at these pH values. Disregarding this fact, it can be concluded that no special effects can be observed in the anion adsorption onto the nano-oxides studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号