首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
   Abstract. In this paper we give a new proof of the existence result of Bensoussan [1, Theorem II-6.1] for the Bellman equation of ergodic control with periodic structure. This Bellman equation is a nonlinear PDE, and he constructed its solution by using the solution of a nonlinear PDE. On the contrary, our key idea is to solve two linear PDEs. Hence, we propose a linear PDE approach to this Bellman equation.  相似文献   

2.
In this paper we consider the Bellman equation in a one-dimensional ergodic control. Our aim is to show the existence and the uniqueness of its solution under general assumptions. For this purpose we introduce an auxiliary equation whose solution gives the invariant measure of the diffusion corresponding to an optimal control. Using this solution, we construct a solution to the Bellman equation. Our method of using this auxiliary equation has two advantages in the one-dimensional case. First, we can solve the Bellman equation under general assumptions. Second, this auxiliary equation gives an optimal Markov control explicitly in many examples. \keywords{Bellman equation, Auxiliary equation, Ergodic control.} \amsclass{49L20, 35G20, 93E20.} Accepted 11 September 2000. Online publication 16 January 2001.  相似文献   

3.
Abstract. This paper deals with an extension of Merton's optimal investment problem to a multidimensional model with stochastic volatility and portfolio constraints. The classical dynamic programming approach leads to a characterization of the value function as a viscosity solution of the highly nonlinear associated Bellman equation. A logarithmic transformation expresses the value function in terms of the solution to a semilinear parabolic equation with quadratic growth on the derivative term. Using a stochastic control representation and some approximations, we prove the existence of a smooth solution to this semilinear equation. An optimal portfolio is shown to exist, and is expressed in terms of the classical solution to this semilinear equation. This reduction is useful for studying numerical schemes for both the value function and the optimal portfolio. We illustrate our results with several examples of stochastic volatility models popular in the financial literature.  相似文献   

4.
   Abstract. This paper deals with an extension of Merton's optimal investment problem to a multidimensional model with stochastic volatility and portfolio constraints. The classical dynamic programming approach leads to a characterization of the value function as a viscosity solution of the highly nonlinear associated Bellman equation. A logarithmic transformation expresses the value function in terms of the solution to a semilinear parabolic equation with quadratic growth on the derivative term. Using a stochastic control representation and some approximations, we prove the existence of a smooth solution to this semilinear equation. An optimal portfolio is shown to exist, and is expressed in terms of the classical solution to this semilinear equation. This reduction is useful for studying numerical schemes for both the value function and the optimal portfolio. We illustrate our results with several examples of stochastic volatility models popular in the financial literature.  相似文献   

5.
A new transform method for solving initial-boundary value problems for linear and integrable nonlinear PDEs in two independent variables has been recently introduced in [1]. For linear PDEs this method involves: (a) formulating the given PDE as the compatibility condition of two linear equations which, by analogy with the nonlinear theory, we call a Lax pair; (b) formulating a classical mathematical problem, the so-called Riemann-Hilbert problem, by performing a simultaneous spectral analysis of both equations defining the Lax pair; (c) deriving certain global relations satisfied by the boundary values of the solution of the given PDE. Here this method is used to solve certain problems for the heat equation, the linearized Korteweg-deVries equation and the Laplace equation. Some of these problems illustrate that the new method can be effectively used for problems with complicated boundary conditions such as changing type as well as nonseparable boundary conditions. It is shown that for simple boundary conditions the global relations (c) can be analyzed using only algebraic manipulations, while for complicated boundary conditions, one needs to solve an additional Riemann-Hilbert problem. The relationship of this problem with the classical Wiener-Hopf technique is pointed out. The extension of the above results to integrable nonlinear equations is also discussed. In particular, the Korteweg-deVries equation in the quarter plane is linearized.  相似文献   

6.
With the aid of Maple symbolic computation and Lie group method, PKPp equation is reduced to some (1 + 1)-dimensional partial differential equations, in which there are linear PDE with constant coefficients, nonlinear PDE with constant coefficients, and nonlinear PDE with variable coefficients. Using the separation of variables, homoclinic test technique and auxiliary equation methods, we obtain new abundant exact non-traveling solution with arbitrary functions for the PKPp.  相似文献   

7.
We consider a general model of singular stochastic control with infinite time horizon and we prove a ``verification theorem' under the assumption that the Hamilton—Jacobi—Bellman (HJB) equation has a C 2 solution. In the one-dimensional case, under the assumption that the HJB equation has a solution in W loc 2,p(R) with , we prove a very general ``verification theorem' by employing the generalized Meyer—Ito change of variables formula with local times. In what follows, we consider two special cases which we explicitly solve. These are the formal equivalent of the one-dimensional infinite time horizon LQG problem and a simple example with radial symmetry in an arbitrary Euclidean space. The value function of either of these problems is C 2 and is expressed in terms of special functions, and, in particular, the confluent hypergeometric function and the modified Bessel function of the first kind, respectively. Accepted 21 February 1997  相似文献   

8.
Summary. To solve 1D linear integral equations on bounded intervals with nonsmooth input functions and solutions, we have recently proposed a quite general procedure, that is essentially based on the introduction of a nonlinear smoothing change of variable into the integral equation and on the approximation of the transformed solution by global algebraic polynomials. In particular, the new procedure has been applied to weakly singular equations of the second kind and to solve the generalized air foil equation for an airfoil with a flap. In these cases we have obtained arbitrarily high orders of convergence through the solution of very-well conditioned linear systems. In this paper, to enlarge the domain of applicability of our technique, we show how the above procedure can be successfully used also to solve the classical Symm's equation on a piecewise smooth curve. The collocation method we propose, applied to the transformed equation and based on Chebyshev polynomials of the first kind, has shown to be stable and convergent. A comparison with some recent numerical methods using splines or trigonometric polynomials shows that our method is highly competitive. Received October 1, 1998 / Revised version received September 27, 1999 / Published online June 21, 2000  相似文献   

9.
We show that a broad class of fully nonlinear, second‐order parabolic or elliptic PDEs can be realized as the Hamilton‐Jacobi‐Bellman equations of deterministic two‐person games. More precisely: given the PDE, we identify a deterministic, discrete‐time, two‐person game whose value function converges in the continuous‐time limit to the viscosity solution of the desired equation. Our game is, roughly speaking, a deterministic analogue of the stochastic representation recently introduced by Cheridito, Soner, Touzi, and Victoir. In the parabolic setting with no u‐dependence, it amounts to a semidiscrete numerical scheme whose timestep is a min‐max. Our result is interesting, because the usual control‐based interpretations of second‐order PDEs involve stochastic rather than deterministic control. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
This work is devoted to the study of a class of Hamilton–Jacobi–Bellman equations associated to an optimal control problem where the state equation is a stochastic differential inclusion with a maximal monotone operator. We show that the value function minimizing a Bolza-type cost functional is a viscosity solution of the HJB equation. The proof is based on the perturbation of the initial problem by approximating the unbounded operator. Finally, by providing a comparison principle we are able to show that the solution of the equation is unique.  相似文献   

11.
In this paper, we present a power penalty function approach to the linear complementarity problem arising from pricing American options. The problem is first reformulated as a variational inequality problem; the resulting variational inequality problem is then transformed into a nonlinear parabolic partial differential equation (PDE) by adding a power penalty term. It is shown that the solution to the penalized equation converges to that of the variational inequality problem with an arbitrary order. This arbitrary-order convergence rate allows us to achieve the required accuracy of the solution with a small penalty parameter. A numerical scheme for solving the penalized nonlinear PDE is also proposed. Numerical results are given to illustrate the theoretical findings and to show the effectiveness and usefulness of the method. This work was partially supported by a research grant from the University of Western Australia and the Research Grant Council of Hong Kong, Grants PolyU BQ475 and PolyU BQ493.  相似文献   

12.
Abstract In [3] Dias and Figueira have reported that the square of the solution for the nonlinear Dirac equation satisfies the linear wave equation in one space dimension. So the aim of this paper is to proceed with their work and to clarify a structure of the nonlinear Dirac equation. The explicit solutions to the nonlinear Dirac equation and Dirac-Klein-Gordon equation are obtained. Keywords: Nonlinear Dirac equation, Dirac-Klein-Gordon equation, Pauli matrix Mathematics Subject Classification (2000): 35C05, 35L45  相似文献   

13.
In this paper, we develop a new method to approximate the solution to the Hamilton–Jacobi–Bellman (HJB) equation which arises in optimal control when the plant is modeled by nonlinear dynamics. The approximation is comprised of two steps. First, successive approximation is used to reduce the HJB equation to a sequence of linear partial differential equations. These equations are then approximated via the Galerkin spectral method. The resulting algorithm has several important advantages over previously reported methods. Namely, the resulting control is in feedback form and its associated region of attraction is well defined. In addition, all computations are performed off-line and the control can be made arbitrarily close to optimal. Accordingly, this paper presents a new tool for designing nonlinear control systems that adhere to a prescribed integral performance criterion.  相似文献   

14.
For a linear control problem using the traditional open-loop approach, a new representation for the singular control and generalized, invariant conditions for optimality are found. The phase portrait of a nonlinear control problem is considered in the neighborhood of singular trajectories. The singular paths form a hypersurface, approached by regular paths from both sides. The Bellman function for this problem is a classical (smooth) solution to a first-order PDE with nonsmooth Hamiltonian over two smooth (regular) branches, related to the halfneighborhoods of the surface. These solutions are at least twice differentiable and have first discontinuous derivatives of odd order. The invariant form for these necessary conditions is found in terms of Jacobi (Poisson) brackets, consisting of several equalities and inequalities. The latter relations guarantee the validity of the Kelley condition as well as the geometrical constraints for the singular control variables. Thus, the Kelley condition appears to be just a certain property of a smooth solution to a first-order PDE with nonsmooth Hamiltonian. All the relations, including the Hamiltonian equations of singular motion, do not use singular controls; they are based on regular Hamiltonians depending only upon the state vector and the gradient of the Bellman function (adjoint vector).This work was suported by Grant No. 93-013-16285 of the Russian Fund for Fundamental Research.  相似文献   

15.
齐次平衡法是把非线性偏微分方程转换成带约束条件的线性偏微分方程的一种很好的方法 .本文在齐次平衡法的基础上具体讨论了KP方程的精确解 ,包括孤波解 ,一般的行波解 ,有理函数解和一种新类型的解 .  相似文献   

16.
Abstract

We consider stochastic optimal control problems in Banach spaces, related to nonlinear controlled equations with dissipative non linearities: on the nonlinear term we do not impose any growth condition. The problems are treated via the backward stochastic differential equations approach, that allows also to solve in mild sense Hamilton Jacobi Bellman equations in Banach spaces. We apply the results to controlled stochastic heat equation, in space dimension 1, with control and noise acting on a subdomain.  相似文献   

17.
We propose an algorithm for reducing an (M+1)-dimensional nonlinear partial differential equation (PDE) representable in the form of a one-dimensional flow ut + $w_{x_1 } $ (u, ux uxx,…) = 0 (where w is an arbitrary local function of u and its xi derivatives, i = 1,…, M) to a family of M-dimensional nonlinear PDEs F(u,w) = 0, where F is a general (or particular) solution of a certain second-order two-dimensional nonlinear PDE. In particular, the M-dimensional PDE might turn out to be an ordinary differential equation, which can be integrated in some cases to obtain explicit solutions of the original (M+1)-dimensional equation. Moreover, a spectral parameter can be introduced in the function F, which leads to a linear spectral equation associated with the original equation. We present simplest examples of nonlinear PDEs together with their explicit solutions.  相似文献   

18.
In this paper we implement the moving mesh PDE method for simulating the blowup in reaction–diffusion equations with temporal and spacial nonlinear nonlocal terms. By a time-dependent transformation, the physical equation is written into a Lagrangian form with respect to the computational variables. The time-dependent transformation function satisfies a parabolic partial differential equation — usually called moving mesh PDE (MMPDE). The transformed physical equation and MMPDE are solved alternately by central finite difference method combined with a backward time-stepping scheme. The integration time steps are chosen to be adaptive to the blowup solution by employing a simple and efficient approach. The monitor function in MMPDEs plays a key role in the performance of the moving mesh PDE method. The dominance of equidistribution is utilized to select the monitor functions and a formal analysis is performed to check the principle. A variety of numerical examples show that the blowup profiles can be expressed correctly in the computational coordinates and the blowup rates are determined by the tests.  相似文献   

19.
We state and study the various limiting forms and their associated mathematical properties of a nonlinear finite difference scheme for the linear time-dependent Schrödinger partial differential equation (PDE). A formal solution to the full equation is given.  相似文献   

20.
This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton–Jacobi–Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rössler system and synchronization of the hyperchaotic Rössler system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号