首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties such as the glass transition temperature ( T(g)) and the diffusion coefficient of ultrathin polymeric films are shown to depend on the dimensions of the system. In this work, a hard-sphere molecular dynamics methodology has been applied to simulate such systems. We investigate the influence that substrates have on the behavior of thin polymer films; we report evidence suggesting that, depending on the strength of substrate-polymer interactions, the glass transition temperature for a thin film can be significantly lower or higher than that of the bulk.  相似文献   

2.
The local and cooperative dynamics of supported ultrathin films ( L = 6.4 - 120 nm) of isotactic poly(methyl methacrylate) (i-PMMA, Mn = 118 x 10(3) g/mol) was studied using dielectric relaxation spectroscopy for a wide range of frequencies (0.1 Hz to 10(6) Hz) and temperatures (250 - 423 K). To assess the influence of the PMMA film surfaces on the glass transition dynamics, two different sample geometries were employed: a single layer PMMA film with the film surfaces in direct contact with aluminum films which act as attractive, hard boundaries; and a stacked polystyrene-PMMA-polystyrene trilayer film which contains diffuse PMMA-PS interfaces. For single layer films of i-PMMA, a decrease of the glass transition temperature T(g) by up to 10 K was observed for a film thickness L < 25 nm (comparable to R(EE)), indicated by a decrease of the peak temperature T(alpha) in the loss epsilon(")(T) at low and high frequencies and by a decrease in the temperature corresponding to the maximum in the apparent activation energy E(a)(T) of the alpha-process. In contrast, measurements of i-PMMA sandwiched between PS-layers revealed a slight (up to 5 K) increase in T(g) for PMMA film thickness values less than 30 nm. The slowing down of the glass transition dynamics for the thinnest PMMA films is consistent with an increased contribution from the less mobile PMMA-PS interdiffusion regions.  相似文献   

3.
We have measured, the thickness dependence of the glass transition temperature T(g)( h), using ellipsometry at variable temperature, for poly(methyl-methacrylate) (PMMA) of various tacticity in confined geometry. We report that several factors significantly affect T(g)( h): i) polymer microstructure (stereoregularity of PMMA) related to local dynamics; ii) interfacial interactions; iii) conformation of the polymer chains. These results raise many fundamental questions on the origin of the thickness-dependent glass transition. Why and how do the interactions with the substrate significantly affect T(g)( h)? Does T(g)( h) depend on the modifications of conformational parameters of the chains (their entropy)? What is the correlation between local dynamics and T(g)( h) in thin films? The aim of this paper is to summarise these open questions, which should stimulate further investigations in the thin polymer film scientific community.  相似文献   

4.
Many of water's peculiar physical properties are still not well understood, and one of the most important unresolved questions is its glass transition related dynamics. The consensus has been to accept a glass transition temperature (T(g)) around 136 K, but this value has been questioned and reassigned to about 165 K. We find evidence that the dielectric relaxation process of confined water that has been associated with the long accepted T(g) of water (130-140 K) must be a local process which is not related to the actual glass transition. Rather, our data indicate a glass transition at 160-165 K for bulk water and about 175 K for confined water (depending on the confining system).  相似文献   

5.
The ultrasensitive differential scanning calorimetry is used to observe the glass transition in thin (1-400 nm) spin-cast films of polystyrene, poly (2-vinyl pyridine) and poly (methyl methacrylate) on a platinum surface. A pronounced glass transition is observed even at a thickness as small as 1-3 nm. Using the high heating (20-200 K/ms) and cooling (1-2 K/ms in glass transition region) rates which are typical for this technique, we do not observe appreciable dependence of the glass transition temperature over the thickness range from hundreds of nanometers down to 3 nm thick films. The evolution of calorimetric data with film thickness is discussed in terms of broadening of transition dynamics and loss of transition contrast.  相似文献   

6.
Blends of two highly crystalline polymers containing an elastomer were prepared to study the glass transition of the confined elastomer. The polymers chosen were high density poly ethylene (HDPE), polypropylene (PP), and two elastomers of a different nature: natural number (NR) and EPDM. The dynamic mechanical analyzer (DMA) technique was used to analyze the storage modulus of blends with elastomer content from 0% to 30% by weight, with the remainder made up of equal amounts of HDPE and PP, and blends with 10% of the elastomer, but varied ratios of polyolefins. We used the differentiation modification of the Arrhenius method in the kinetic analysis assuming an n‐order relaxation mechanism, which allowed detecting the percolation threshold of NR. Results indicate that both temperature and activation energy for glass transition (T g ) are dependent on the types of polymers in the blend and blend composition. The T g and E values of the unblended elastomers are higher than those in blends; this behavior is associated with the elastomer confinement and blend morphology.  相似文献   

7.
The glass transition temperature of poly (maleic anhydride-alt-1-octadecen) and poly (styreneco-maleic anhydride) cumene-terminated thin films has been measured by mechanical relaxation of Langmuir films of these polymers. The dynamical properties show glass-like features (non-Arrhenius relaxation times and non-Debye mechanical response) interpreted by the coupling model. The glass transition temperature values determined by a mechanical relaxation experiment (step-compression) agree very well with those obtained by surface potential measurements. It is found that the glass transition temperature values in thin films decrease by about 100K as compared with those corresponding to the bulk polymers. The coadsorption of the water-insoluble surfactant DODAB decreases the glass transition temperature.  相似文献   

8.
The film thickness dependence of both the glass transition temperature (T(g)) and the 1 kHz alpha relaxation were studied for thin films of isotactic Poly (methylmethacrylate) (i-PMMA) supported on aluminium substrates. Films in the thickness range 7-200 nm were studied. The ellipsometrically determined T(g) was found to show reductions for films thinner than 60 nm, with the largest observed reduction being 12 K for a 7 nm thick film. Measurements of the T(g) were also performed on i-PMMA films supported on silicon substrates. Dielectric studies of the temperature dependent 1 kHz alpha relaxation peak, showed that the position (T(alpha)) and shape of the peak have no film thickness dependence. This was shown to hold for films with one free surface and films with a 30 nm thermally evaporated capping layer. Capping the films was shown to have no effect on the thickness dependence of either T(g) or T(alpha). The implications of these results are discussed further and the different film thickness dependencies of T(g) and T(alpha) are discussed. This is done within the framework of the Vogel-Fulcher-Tamann (VFT) theory of glass forming materials and also in the context of the existence of a dynamic correlation length xi.  相似文献   

9.
We report relaxation times (τ) for surface capillary waves on 27-127?nm polystyrene (PS) top layers in bilayer films using x-ray photon correlation spectroscopy. At ~10?°C above the PS glass transition temperature (T_{g}), τ tracks with underlayer modulus, being significantly smaller on softer substrates at low in-plane scattering wave vector. Relative to capillary wave theory, we also report stiffening behavior upon nanoconfinement of the PS layers. At PS T_{g}+40?°C, both effects become negligible. We demonstrate how neighboring polymer domains impact dynamics over substantial length scales.  相似文献   

10.
The effect of nanoconfinement on the glass transition temperature T(g) in thin polymer films is studied as a function of added small-molecule diluent or plasticizer. The decrease [increase] in T(g) found in nanoconfined, neat polystyrene [poly(2-vinyl pyridine)] is suppressed by added diluent, with 13-20 nm thick polystyrene films exhibiting bulk T(g) upon addition of 9 wt % pyrene or 4 wt % dioctylphthalate [corrected]. This is explained by a connection between the size scale of the cooperative dynamics associated with T(g), which decreases with added diluent, and the size scale of the nanoconfinement effect.  相似文献   

11.
Recent experiments have demonstrated that the dynamics in liquids close to and below the glass transition temperature is strongly heterogeneous, on the scale of a few nanometers. We use here a model proposed recently for explaining these features, and show that the heterogeneous nature of the dynamics has important consequences when considering the dynamics of thin films. We show how the dominant relaxation time in a thin film is changed as compared to the bulk, as a function of the thickness, the interaction energy with the substrate, and the temperature. The corresponding time scales cover the so-called VFT (or WLF) regime and vary between 10-8 s to 104 s typically. In the absence of interaction, our model allows for interpreting suspended films experiments, in the case of small polymers for which the data do not depend on the polymer weight. The interaction leads to an increase of for an interaction per monomer of the order of the thermal energy T. This increase saturates at the value corresponding to strongly interacting films for adsorption energies slightly larger and still of order T. In particular, we predict that the shift can be non-monotonous as a function of the film thickness, in the case of intermediate interaction strength.Received: 1 July 2004, Published online: 26 October 2004PACS: 64.70.Pf Glass transitions - 61.41. + e Polymers, elastomers, and plastics - 68.15. + e Liquid thin films  相似文献   

12.
13.
为了进一步了解SiO_2纳米粒子掺杂对有水环境下间位芳纶绝缘纸性能的影响以及有、无水环境下芳纶绝缘纸性能的变化,本文利用分子动力学的方法建立了有水存在的芳纶分子模型、经SiO_2纳米掺杂后的芳纶分子模型以及无水参与的芳纶分子模型,研究了SiO_2纳米掺杂和水分对芳纶绝缘纸在玻璃转化温度、均方位移及力学模量方面的影响.研究结果表明,水分的存在使得芳纶绝缘纸的玻璃转化温度由原先的549 K降为523 K,在此基础上进行纳米SiO_2掺杂后玻璃转化温度可以由523 K提升到530 K.与无水环境芳纶绝缘纸的均方位移相对比可以发现,水分的存在在一定程度上提高了芳纶分子的链运动进而削弱了绝缘纸的热稳定性,而SiO_2纳米改性可以减弱水分对芳纶绝缘纸的这种不利影响.改性后的绝缘纸在有水环境下的力学性能得以提升,通过对比有、无水环境下芳纶绝缘纸的力学模量可以发现,一定水分的加入反而使得绝缘纸的力学性能得到了一定的提升.最后对所得模拟结果进行了理论分析,为提升芳纶绝缘纸的性能提供了有益的参考.  相似文献   

14.
By means of constant-pressure, constant-temperature molecular dynamics simulations, we study the glass transition of a system composed of 864 Lennard-Jones particles with periodic boundary conditions. We calculate the thermodynamic properties, the structure properties, the diffusion constant and the microscopic structural parameters of our system, all of which show, at the nearly same temperature, the behaviours characteristic of the glass transition. The effect of the quench rate is such that the lower the quench rate, the lower the glass transition temperature and the more stable the obtained glass. Our simulations indicate that, for argon, the critical quench rate which separates the glass-forming quench rates and the crystal-forming quench rates is in the range between 4×1010 K/sec and 40×1011 K/sec.  相似文献   

15.
Recent experiments have demonstrated that the dynamics in liquids close to the glass transition temperature is strongly heterogeneous. The characteristic size of these heterogeneities has been measured to be a few nanometers at T g. We extend here a recent model for describing the heterogeneous nature of the dynamics which allows both to derive this length scale and the right orders of magnitude of the heterogeneities of the dynamics close to the glass transition. Our model allows then to interpret quantitatively small probes diffusion experiments. Received 29 March 2002 and Received in final form 11 November 2002 RID="a" ID="a"e-mail: long@lps.u-psud.fr  相似文献   

16.
The glass transition temperature is known to increase with decreasing film thickness h for sufficiently thin poly(methyl methacrylate) films supported by silicon oxide substrates. We show that this system undergoes a CO2 pressure-induced devitrification transition, P(g), which is film thickness dependent, P(g)(h)=DeltaP(g)+P(bulk)(g). P(bulk)(g) is the bulk glass transition and DeltaP(g) can be positive or negative depending on T and P. The phenomenon of retrograde vitrification, wherein the polymer exhibits a rubbery-to-glassy-to-rubbery transition upon changing temperature isobarically, is also shown to occur in this system and it is film thickness dependent.  相似文献   

17.
We explore the dynamics of viscous propylene glycol (PG) near its glass transition for the case of soft spatial confinement. The supercooled liquid is geometrically restricted by the reverse micelles of a glass-forming PG/AOT/decalin microemulsion, with the intramicellar dynamics being probed by triplet state solvation dynamics. While hard confinement by porous solids is known to result in slower dynamics and an increased glass transition temperature T(g) of PG, the nanodroplets suspended in a more fluid environment display faster structural relaxation, equivalent to a reduction of T(g) as observed in freestanding polymer films.  相似文献   

18.
王军强  欧阳酥 《物理学报》2017,66(17):176102-176102
玻璃-液体转变现象,简称玻璃转变,被诺贝尔物理学奖获得者安德森教授评为最深奥与重要的凝聚态物理问题之一.金属玻璃作为典型的非晶态物质,具有与液体相似的无序原子结构,因此又称为冻结了的液态金属,是研究玻璃转变问题的理想模型材料.当加热至玻璃转变温度,或者加载到力学屈服点附近时,金属玻璃将会发生流动.由于热或应力导致的流动现象对金属玻璃的应用具有重要意义.本文简要回顾了金属玻璃流变现象,综述了流变扩展弹性模型的研究进展和未来发展趋势.  相似文献   

19.
The segmentai dynamics in a series of alternating, phase-separated poly(imidedimethylsiloxane) (PI/PDMS) block copolymers has been studied by differential scanning calorimetry (DSC) over the temperature range of 100–630 K, covering the regions of the glass transition and β-relaxation for soft and rigid blocks. The PI blocks had degrees of polymerization that ranged from 6 to 30, and the PDMS moiety content varied from 10 to 47 mass%. Complex behavior of the low-temperature, PDMS block glass transition characteristics was shown, and the conditions for maintaining the PI domains with high T g, providing thermal stability for these block copolymers, were ascertained. The peculiarities of segmentai dynamics and its heterogeneity observed within the glass transition could be interpreted by using as a basis the concept of the common segmentai nature of the α- and β-transitions in flexible-chain polymers.  相似文献   

20.
采用分子动力学方法对液态金属Al在不同的初始状态下,以相同急冷速率凝固的过程进行模拟跟踪研究,发现:在玻璃转变温度Tg以上(即过冷液态)时,系统的微结构组态情况基本一致,相差甚微;但在Tg以下时,不同的初始液态微结构对其固态微结构有明显的影响;且在Tg处各种固态微结构之间的差别发生突发性的变化。这一结果对于深入理解液-固微结构之间的转变关系,具有一定的重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号