首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stéphane Trudeau 《Tetrahedron》2006,62(49):11470-11476
A new class of optically active phosphine-oxazoline ligands has been synthesized wherein backbone chirality of these new ligands is installed by a Sharpless asymmetric dihydroxylation. Different backbone protecting groups as well as different substitution patterns on the oxazoline ring were studied. These ligands were tested in allylic substitution (with ee's up to 97%) and asymmetric Tsuji allylation.  相似文献   

2.
Palladium-catalyzed asymmetric allylic substitutions using thioether and phosphino derivatives of ferrocenyloxazoline as ligands have been investigated with a focus on studying the role of planar chirality. In allylic alkylation, up to 98% ee and 95% ee were achieved with S,N- and P,N-ligands, respectively. In allylic amination, 97% ee was realized with P,N-ligands in the presence of TBAF. Several palladium allylic complexes were characterized by X-ray diffraction and/or solution NMR. Thioether derivatives of ferrocenyloxazolines with only planar chirality showed lower enantioselectivity in the allylic alkylation except 5c because of the formation of a new chirality on sulfur atom during the coordination of sulfur with palladium. On the other hand, in the planar chiral P,N-ligands without central chirality, (Sp)-11a-c there was no such disturbance and comparatively higher enantioselectivity in both palladium-catalyzed allylic alkylation and amination was provided.  相似文献   

3.
Chiral ferrocenyl heterobidentate P/S ligands bearing both central and planar chirality were prepared from (S)-Ugi's amine via a three-step modular synthesis. Through systematic screening and optimization, L8 was found to be the best ligand for Pd-catalyzed asymmetric allylic alkylation of indoles with ee's up to 96% being attained.  相似文献   

4.
The preparation of [2-(S(p))-[(trans-(2R,5R)-2,5-dialkylpyrrolidinyl)methyl]]ferrocenyldiphenyl phosphines, new ferrocenylphosphinamine ligands possessing one site of planar and two stereogenic centers, is described. trans-(2R,5R)-2,5-Dialkyl-1-(ferrocenylmethyl)pyrrolidines were diastereoselectively lithiated and quenched with chlorodiphenylphosphine. For the dimethyl ligand, chemical yields of up to 65% and des of up to 90% were obtained whereas the diethyl ligand afforded lower chemical yields (10%) and des of 78%. Diastereomerically pure material was obtained in both cases after a single recrystallization from ethanol. (S)-Planar chirality was confirmed by X-ray crystallographic analysis of the dimethyl ligand. The palladium complexes of the new ligands were applied in the allylic alkylation of 1,3-diphenylprop-2-enyl acetate with reasonable chemical yields and moderate ees of up to 36% and 38% when dimethyl malonate and dimethyl methyl malonate were employed as nucleophiles, respectively. Importantly, it was found that the new ligands possessing the combination of planar and central chirality gave the opposite enantiomeric alkylation products compared to ligands which possess only the central chirality of the trans-2,5-dimethylpyrrolidinyl moiety. Solution NMR studies of the 1,3-diphenylallyl palladium complex of the dimethyl ligand revealed the presence of only the exo-configured allyl diastereomer.  相似文献   

5.
An enantioselective synthesis of allylic esters has been achieved by a novel asymmetric alkylation of allylic gem-dicarboxylates. The catalyst derived from palladium(0) and R,R-1,2-di(2'-diphenylphosphinobenzamido)cyclohexene efficiently induced the alkylation process with a variety of nucleophiles to provide allylic esters as products in good yield. High regio- and enantioselectivities were observed in the alkylation with most nucleophiles derived from malonate, whereas a modest level of ee's was obtained in the reactions with less reactive nucleophiles such as bis(phenylsulfonyl)ethane. In the latter case, a slow addition procedure proved effective, leading to significantly improved ee's. The utility of the alkylation products was demonstrated by several synthetically useful transformations including allylic isomerizations, allylic alkylations, and Claisen rearrangements. Using these reactions, the chirality of the initial allylic carbon-oxygen bond could be transferred to new carbon-oxygen, carbon-carbon, or carbon-nitrogen bonds in a predictable fashion with high stereochemical fidelity. The conversion of gem-diesters to chiral esters by the substitution reaction is the equivalent of an asymmetric carbonyl addition by stabilized nucleophiles. In conjunction with the subsequent reactions that occur with high stereospecificity, allylic gem-dicarboxylates serve as synthons for a double allylic transformation.  相似文献   

6.
Jun-Long Niu  Pei-Pei Kong 《Tetrahedron》2009,65(43):8869-7422
A series of new chiral heterobidentate sulfide-tertiary amine (sp3) ligands 3a-c, 6 were readily prepared from cheap and easily available (R)-cysteine and l-(+)-methionine. A Pd-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate was used as a model reaction to examine the catalytic efficiencies of these aziridine sulfide ligands, and ligand 3b afforded the enantioselectivity of up to 91% ee. The origin of enantioselectivity for heterobidentate sulfide-tertiary amine (sp3) ligands was first rationalized based on X-ray crystallographic data, and NMR spectroscopic data for relevant intermediate palladium allylic complexes. Our results demonstrated that the sulfur atom was a better π-allyl acceptor than the nitrogen atom for heterobidentate sulfide-tertiary amine (sp3) ligands, and the steric as well electronic properties of the palladium allylic complexes were crucial for the enantioselectivity.  相似文献   

7.
《Tetrahedron: Asymmetry》2007,18(17):2055-2060
New chiral phospholanes were prepared by coupling of bromo-substituted heterocycles with the enantiopure, building block (2R,5R)-2,5-dimethyl-1-chlorophospholane. Some of the new phosphine ligands have the potential for self-assembling via hydrogen bondings in a metal complex. By application of these and related ligands in the palladium catalyzed allylic amination reaction, high enantioselectivities (up to 99%) were achieved. The influence of the construction of the cyclic phosphine ligands on the enantioselectivity is analyzed.  相似文献   

8.
We have designed a new family of readily available modular diphosphoroamidite ligands from d-xylose for Pd-catalyzed asymmetric allylic alkylation reactions. This constitutes the first example of diphosphoroamidite ligands applied to this process. Good-to-excellent activities (TOFs up to 850 mol substratex(mol Pdxh)-1) and enantioselectivities (ee's up to 95%) have been obtained for several substrates with different electronic and steric properties. The results indicate that catalytic performance is highly affected by the substituents and the axial chirality of the biaryl moieties of the ligand. We also discuss the synthesis and characterization of the Pd-pi-allyl intermediates to get more insight into the origin of enantioselectivity using these catalytic systems.  相似文献   

9.
Arylation of various sulfenate anions generated from beta-sulfinyl esters by retro-Michael reaction in the presence of palladium(0) and enantiopure ligands gave the corresponding aryl sulfoxides in enantio-enriched form. The Josiphos-type ligand (R)-(S)-PPF-t-Bu2 turned out to be the best ligand tested, allowing ee's up to 83% in a predictable sense.  相似文献   

10.
《Tetrahedron: Asymmetry》1998,9(6):937-948
A new series of homochiral amino-phosphine ligands was prepared. The use of these ligands in the palladium catalyzed allylic alkylation of 1,3-diphenyl-1-acetoxy-2-propene with sodium malonate gave substitution products with up to 76% e.e. The enantioselectivity was largely dependent on the nitrogen substituent.  相似文献   

11.
A series of novel chiral aminophosphine ligands are designed and readily prepared from (S)-prolinol. The reactivity and selectivity in the palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate with a dimethyl malonate-BSA-LiOAc system using these chiral ligands are evaluated, and the structural elucidation of ligands and palladium complex is also conducted. Moreover, a series of trialkylsilylated chiral aminophosphine ligands are prepared and applied to palladium-catalyzed asymmetric allylic alkylation (up to 98% ee).  相似文献   

12.
A series of novel planar chiral 2'-substituted 1,1'-P,N-ferrocene ligands 9-11, 14, and 16 were prepared with diastereopurity >99:1 and found to be effective in asymmetric allylic alkylation and amination reactions. Ligand 14 furnished the highest enantiomeric excess, 98.5% and 96.5% ee in alkylation and amination reactions, respectively. The role of planar chirality in asymmetric reactions has been examined, and decisive effects on enantioselectivity as well as the control of absolute configuration in palladium-catalyzed allylic alkylation and amination reactions were observed. To clarify why and how the planar chirality governed the stereochemical outcome, X-ray crystallographic structures of eta(3)-diphenylallyl Pd complexes, (1)H NMR, (31)P NMR spectra of palladium dichloride complexes, and eta(3)-diphenylallyl Pd complexes of three 1,1'-P,N-ferrocene ligands were analyzed with the aid of COSY and 2D NOESY experiments. All results led to the conclusion that planar chirality influences the stereochemical outcome by changing or even inverting the ratio of two rotamers because of the steric interaction between a planar chiral group and the coordination site.  相似文献   

13.
Asymmetric alkylations of allylic geminal dicarboxylates with dialkyl malonates have been investigated. The requisite allylic geminal dicarboxylates are prepared in good yields and high isomeric purities by two catalytic methods, ferric chloride-catalyzed addition of acid anhydrides to alpha,beta-unsaturated aldehydes and palladium-catalyzed isomerization and addition reactions of propargylic acetates. The complex of palladium(0) and the chiral ligand derived from the diamide of trans-1,2-diaminocyclohexane and 2-diphenylphosphinobenzoic acid most efficiently catalyzed the asymmetric process to provide allylic carboxylate esters with high ee. By systematic optimization studies, factors affecting the enantioselectivity of the reaction have been probed. In general, higher ee's have been achieved with those conditions which facilitate kinetic capture of the incipient pi-allylpalladium intermediate. These conditions also proved effective for achieving high regioselectivities. The minor regioisomeric product was formed when reactive substrates or achiral ligands were employed for the reaction, and could be minimized through the use of the chiral ligand. Under the established conditions, the alkylation of various gem-dicarboxylates afforded monoalkylated products in high yields with greater than 90% ee. The process constitutes the equivalent of an addition of a stabilized nucleophile to a carbonyl group with high asymmetric induction.  相似文献   

14.
A practical synthesis of potentially tridentate P,N,N-ligands containing two stereogenic elements incorporated into the axially chiral Quinazolinap and centrally chiral 2-oxazoline subunits is reported. The application of these novel hybrid ligands in Pd(0)-catalyzed asymmetric allylic alkylation revealed the matched and mismatched diastereomer, dominant stereogenic element, as well as the effect of the oxazoline R substituent on the level of enantioselectivity (ee's up to 81%). [structure: see text]  相似文献   

15.
All possible (eta(3)-allyl)palladium complexes (1-4) of the ligand (4S)-[2-(2'-diphenylphosphanyl)phenyl]-4,5-dihydro-4-(2-propyl)-oxazole (L 1) and eta(3)-allyl ligands with one to three phenyl substituents at the terminal allylic centers were synthesized and characterized by X-ray crystal structure analysis and, with respect to allylic isomers, by NMR investigations. Equilibrium geometries, electronic structures, and relative energies of isomeric complexes were computed by restricted Hartree-Fock (RHF) and density functional theory (DFT) calculations; experimentally determined isomer ratios could be reproduced. The results allowed important conclusions to be drawn regarding the mechanism of Pd-catalyzed asymmetric allylic substitutions.  相似文献   

16.
New chiral C1-symmetric dipyridylmethane ligands have been prepared from naturally occurring monoterpenes according to a method based on two consecutive constructions of the pyridine rings. These ligands have been assessed in the enantioselective palladium catalyzed allylic alkylation of 1,3-diphenylprop-2-enyl acetate with dimethylmalonate. Enantioselectivity up to 68% ee has been obtained.  相似文献   

17.
We have designed and synthesized a new family of readily available highly modular phosphite-oxazoline ligands for the Pd-catalyzed asymmetric allylic substitution reactions. The introduction of a pi-acceptor flexible bulky biphenyl phosphite moiety in the ligand design is highly adventitious in the product outcome. Thus, this ligand series affords excellent reaction rates (TOF's up to >2400 mol.(mol.h)-1) and enantioselectivities (ee's up to >99%) and, at the same time, shows a broad scope for different substrate types.  相似文献   

18.
We present an expedient and economical route to a new spiroketal‐based C2‐symmetric chiral scaffold, termed SPIROL. Based on this spirocyclic scaffold, several chiral ligands were generated. These ligands were successfully employed in an array of stereoselective transformations, including in iridium‐catalyzed hydroarylations (up to 95 % ee), palladium‐catalyzed allylic alkylations (up to 97 % ee), intermolecular palladium‐catalyzed Heck couplings (up to 94 % ee), and rhodium‐catalyzed dehydroalanine hydrogenation (up to 93 % ee).  相似文献   

19.
We present an expedient and economical route to a new spiroketal‐based C2‐symmetric chiral scaffold, termed SPIROL. Based on this spirocyclic scaffold, several chiral ligands were generated. These ligands were successfully employed in an array of stereoselective transformations, including in iridium‐catalyzed hydroarylations (up to 95 % ee), palladium‐catalyzed allylic alkylations (up to 97 % ee), intermolecular palladium‐catalyzed Heck couplings (up to 94 % ee), and rhodium‐catalyzed dehydroalanine hydrogenation (up to 93 % ee).  相似文献   

20.
[reaction: see text] A series of phosphite-phosphoroamidite ligands, derived from readily available d-xylose, has been successfully applied for the first time in the Pd-catalyzed allylic substitution of several substrates with different steric and electronic properties, with high enantioselectivities (ee's up to 98) and activities in standard conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号