首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molten inorganic salts and salt hydrates are highly efficient solvents for cellulose. The acetylation and deacetylation of the polymer dissolved in this group of cellulose solvents was investigated. The formation of cellulose acetates in molten salts with low water content and low acidity was confirmed by FT-IR-spectroscopy and 13C-CP/MAS-NMR spectroscopy. The degree of substitution was investigated by 1H-NMR measurements after perpropionylation.  相似文献   

2.
A novel inorganic polymer resin with high photosensitivity was prepared by grafting acrylate functional groups onto the backbone of polyvinylsilazane through a reaction with methyl-2-(bromo-methyl)acrylate via the highly efficient electrophilic substitution of allyl bromide. The as-modified polymer was characterized by 1H NMR and 2D-1H-1H NMR (COSY) methods to determine the reaction mechanism. Differential photocalorimetry, FT-IR spectroscopy and TGA were used to examine its properties. The modified polyvinylsilazane is a promising inorganic polymer photoresist with a high UV sensitivity and a 55% ceramic yield, which is useful for fabricating non-oxide ceramic microstructures using mold free photocuring shaping processes.  相似文献   

3.
The syntheses and rheological behavior of ethyl hydroxyethyl cellulose (EHEC)‐based graft‐copolymers were studied. Copolymers were prepared by grafting EHEC with acrylamide (Aam) via reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyl groups of EHEC were esterified with a carboxylic acid functional chain transfer agent (CTA) to prepare EHEC‐macroCTAs with different degrees of substitution. EHEC‐macroCTAs were characterized by ATR‐FTIR, 13C NMR, and SEC, and elemental analysis was used to quantify the degree of CTA substitution. EHEC‐macroCTAs with different degrees of substitution were copolymerized with acrylamide by “grafting from” technique. Formation of new cellulose‐based copolymers was comprehensively confirmed by 1H NMR, ATR‐FTIR, and SEC measurements. Further, the associations of EHEC‐g‐PAam copolymers in water were studied at various concentrations and temperatures by means of UV–vis spectroscopy, fluorescence spectroscopy, and rheological measurements. The results indicate that copolymers have both intra and intermolecular association in water depending on the amount of grafts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1869–1879, 2009  相似文献   

4.
Cold NaOH/urea aqueous dissolved cellulose was studied for the synthesis of benzyl cellulose by etherification with benzyl chloride. By varying the molar ratios of benzyl chloride to OH groups in cellulose (1.5–4.0) and reaction temperatures (65–70 °C), benzyl cellulose with a degree of substitutions (DS) in the range of 0.29–0.54 was successfully prepared under such mild conditions. The incorporation of benzyl groups into cellulose was evidenced by multiple spectroscopies, including FT IR, 1H NMR, 13C NMR, CP/MAS 13C NMR and XRD. In addition, the thermal stability and surface morphology of the benzyl cellulose was also investigated with regard to the degree of substitution. The results indicated that the benzyl cellulose product with a low DS (0.51) in the present study reached the same solubility in many organic solvents as compared to those prepared in heterogeneous media. After benzylation, the sample decomposed at a lower temperature with a wider temperature range, which indicated that the thermal stability of benzyl cellulose was lower than that of the native cellulose. In addition, benzylation resulted in a pronounced reduction in crystallinity as well as a fundamental alteration of morphology of the native cellulose.  相似文献   

5.
Carbamoylation of cellulose esters (CE) and investigation of the mixed derivatives obtained with NMR spectroscopy represents a useful analytical tool for the determination of the degree of substitution (DS) and analysis of the distribution of substituents on the level of the anhydroglucose unit (AGU). Especially the carbethoxymethylcarbamoylation and the ethylcarbamoylation of CE combined with 1H NMR spectroscopy are efficient and inexpensive ways to gain information on the over-all DS and partial DS values in position 2, 3, and 6 of the AGU. Complete subsequent phenylcarbamoylation can be achieved even for CE with bulky substituents, e.g., adamantanecarboxylic acid esters. In addition to NMR experiments the carbamoylated CE were studied by HPLC after complete chain degradation. Carbethoxymethylcarbamoylation has turned out to be the most useful tool for this path. Chromatograms comparable to carboxymethylated cellulose (CMC) were obtained, which can be exploited to calculate the mole fractions of the basic building units (un-, mono-, di- and tri-substituted glucoses) of the polymer. Comparison with statistic calculations gave a first hint on the distribution of substituents along the polymer chain. For a commercial cellulose diacetate a statistic pattern of substitution was determined.  相似文献   

6.
Inorganic Molten Salts as Solvents for Cellulose   总被引:6,自引:0,他引:6  
Inorganic molten salts can be used as efficient solvents for cellulose in a wide range of degrees of polymerization. Furthermore, molten salts can be applied as reaction medium for the derivatization of cellulose. For both dissolution and derivatization of cellulose, knowledge of the solution state as well as information about chemical interactions with the solvent system is essential. Using the melts of LiClO4·3H2O, NaSCN/KSCN/LiSCN·2H2O and LiCl/ZnCl2/H2O as cellulose solvents, factors which determine the dissolving ability will be discussed. Besides the specific structure of the molten salt hydrate, the cation and the water content of the melt are the most important factors for the dissolving capability of a molten salt hydrate system. FT-Raman spectroscopy, 7Li and 13C NMR spectroscopy were applied to describe solvent–cellulose interactions and the state of cellulose dissolved in the molten salts. Using Raman and solid state NMR spectroscopy it was proved that cellulose is amorphous in the frozen solvent system. The application of inorganic molten salts as a medium for cellulose functionalization is demonstrated for cellulose carboxymethylation and acetylation.  相似文献   

7.
Hydrophobic cellulose nanocrystals (CNs) have been prepared by grafting isocyanate-terminated castor oil, a kind of natural vegetable oil, onto their surface. The existence of castor oil component in the modified cellulose nanocrystals was verified by Fourier transform infrared spectroscopy, solid-state 13C NMR spectra and X-ray photoelectron spectroscopy. At the same time, X-ray diffraction and transmission electron micrographs further proved that the crystalline structure and large aspect ratio of cellulose nanocrystals were essentially preserved after chemical grafting. Furthermore, the surface of modified cellulose nanocrystals appeared to be hydrophobic as indicated by contact angle measurements. The value of the polar component of surface energy decreased from 21.5 mJ/m2 to almost zero via grafting castor oil. These novel hydrophobic castor oil-grafted cellulose nanocrystals appear as valuable alternatives to formulate bionanocomposites with non-polar polymers for optimized performances.  相似文献   

8.
New paths for the fast and reliable analysis of cellulose esters (CE) via subsequent functionalization and 1H NMR spectroscopy were studied. Perpropionylation of the CE is an inexpensive and efficient method. For cellulose diacetates used as representative ester well resolved 1H NMR spectra were obtained, which can be used for the calculation of the over all degree of substitution (DS) and the partial DS values at position 2, 3, and 6. No transesterification occurs during the subsequent acylation and a standard deviation of S2 = 1.32 x 10−4 was found for a series of experiments. In case of more complex ester structures especially with extended aliphatic moieties per-4-nitrobenzoylation need to be applied prior to NMR measurements. The spectra obtained can be completely assigned and applied for the calculation of DS values.  相似文献   

9.
The ionic liquid 1-N-butyl-3-methylimidazolium chloride ([C4mim]+Cl) was investigated as reaction media for the homogeneous acylation of cellulose with 2-furoyl chloride in the presence of pyridine. The preparation of cellulose furoate depending on the reaction conditions, the cellulose type and the pyridine content was studied. Cellulose furoates with a degree of substitution in the range from 0.46 to 3.0 were accessible, i.e., under mild conditions, with a low excess of reagent and in a short reaction time. The products were characterized by elemental analysis, perpropionylation, 1H- and 13C NMR spectroscopy and FTIR spectroscopy. Thomas Heinze is the member of the European Polysaccharide Network of Excellence (EPNOE), www.epnoe.eu  相似文献   

10.
A series of water soluble gold nanoclusters of variable core size were prepared and characterized. The clusters were synthesized using a ligand substitution reaction between CH3(OCH2CH2)3SH and hexanethiol encapsulated gold nanoclusters, and characterized using NMR, FTIR, and UV/Vis spectroscopy, as well as TGA, DSC, and TEM. Conductivity values were obtained for the clusters and increased as expected along with the gold core size. The substitution reaction used in the synthesis was followed by 1H NMR and found to produce only partial ligand substitution after 24 h, consistent with solubility observations and necessitating use of a two-step preparation scheme.  相似文献   

11.
Summary: Ammonium group containing cellulose derivatives are prepared from homogeneously synthesized cellulose p-toluenesulfonic acid esters (tosyl cellulose) by conversion with sodium azide and subsequent reduction of the azido moiety applying NaBH4/CoBr2/2,2′-bipyridine as reagent. Regarding the tosylation, cellulose samples of different degree of polymerization and hemicellulose content possess a different reactivity. The deoxyamino cellulose is water soluble in the protonated state. Elemental analysis, FTIR- and NMR spectroscopy were carried out to analyze the degree of substitution and functionalization pattern. It was also studied to synthesize deoxyazido celluloses without isolation of the tosyl cellulose. However, a predominant formation of deoxychloro moieties occurs.  相似文献   

12.
A new type of water‐soluble ionic cellulose was obtained by means of the dissolution of cellulose in dimethylimidazolium methylphosphite at elevated temperatures over 120 °C. FTIR spectroscopy, 1H and 13C NMR spectroscopy, and elemental analysis results revealed that the repeating unit of the water‐soluble cellulose consists of a dialkylimidazolium cation and a phosphite anion bonded to cellulose. The degree of phosphorylation on the cellulose chain was between 0.4 and 1.3 depending on the reaction temperature and time. With an increasing degree of phosphorylation, water solubility was increased. Scanning electron microscopy and X‐ray diffraction analyses revealed that the cellulose crystalline phase in the parent crystalline cellulose changed to an amorphous phase upon transformation into ionic cellulose. Thermogravimetric analysis showed the prepared phosphorylated cellulose was stable over 250 °C and a substantial amount of residue remained at 500 °C.  相似文献   

13.
Abstract

Cellulose carbamate and ester derivatives were synthesized in homogeneous solutions of lithium chloride (LiCl)/N,N-dimemyl-acetamide (DMAc) by the reaction of cellulose with ethyl 4-isocyanatobenzoate and the activated esters of N,N-dimethyl-aminobenzoic acids. Comparative reactions were performed with phenyl isocyanate and the activated ester of benzoic acid. All reactions were followed spectroscopically by FTIR, 1H NMR, and 13C NMR. Degrees of substitution were calculated utilizing UV spectroscopy. The isocyanate reactions are facile allowing controllable degrees of substitution and high yields. By contrast, the activated ester pathway inherently results in lower degrees of substitution and lower yields due in part to undesirable side reactions.  相似文献   

14.
This work deals with a new approach of grafting cellulose surface fibres by polycaprolactone macromolecular chains in heterogeneous conditions via click-chemistry. Thus, cellulose esters were prepared by reacting Avicel with undecynoic acid, in order to prepare cellulose substrate bearing multiple CC-terminated hairs. The prepared modified Avicel substrates were characterised by FTIR, XPS spectroscopy, elemental analyses and showed that the grafting have indeed occurred. The degree of substitution of the prepared cellulose esters was around 0.1. In parallel, polycaprolactone-diol (PCL) was converted to azido-derivative and the ensuing products characterised by FTIR and 13C-NMR spectroscopy. Both methods confirmed the success of such modification. Finally, cellulose esters were reacted with azido-PCL grafts in heterogeneous conditions through “click chemistry”. The thus prepared modified cellulose substrates were characterized by FTIR and XPS spectroscopy as well as elemental analyses. The three techniques confirmed the occurrence of the grafting. A weight gain of 20% was achieved.  相似文献   

15.
A new photosensitive polyoxometalate (POM) organic–inorganic hybrid compound has been prepared by covalently tethering coumarin moieties onto a Mn–Anderson cluster. This compound has been fully characterized by 1H NMR, 13C NMR, FTIR, and UV/Vis spectroscopy, and ESI‐MS. This organic–inorganic hybrid compound can undergo reversible light‐driven polymerization and this process has been characterized in detail.  相似文献   

16.
An ethyl cellulose derivative containing azobenzene-based mesogenic moieties was prepared by the reaction of 4-methoxyazobenzene-4′-oxyacetic acid and ethyl cellulose by esterification in the presence of N,N′ -dicylcohexylcarbodiimide and 4-dimethylaminopyridine. Its chemical structure and liquid crystalline properties were characterized by FTIR, 1H NMR, POM, DSC and WAXD. The degree of substitution of the cellulose backbone by the azobenzene-based mesogenic moieties is 0.9. The polymer is thermotropic and exhibits liquid crystalline behaviour over the temperature range 125–172°C.  相似文献   

17.
A novel cellulose‐click‐chitosan polymer was prepared successfully in three steps: (1) propargyl cellulose with degrees of substitution (DS) from 0.25 to 1.24 was synthesized by etherification of bamboo Phyllostachys bambusoide cellulose with propargyl chloride in DMA/LiCl in the presence of NaH. The regioselectivity of propargylation on anhydrous glucose unit determined by GC‐MS was in the order of 2 >> 6 > 3; (2) the functional azide groups were introduced onto the chitosan chains by reacting chitosan with 4‐azidobenzoic acid in [Amim]Cl/DMF and the DS ranged from 0.02 to 0.46; (3) thus, the cellulose‐click‐chitosan polymer was obtained via click reaction, that is, the Cu(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction, between the terminal alkyne groups of cellulose and the azide groups on the chitosan backbone at room temperature. The successful binding of cellulose and chitosan was confirmed and characterized by FTIR and CP/MAS 13C NMR spectroscopy. TGA analyses indicated that the cellulose‐click‐chitosan polymer had a higher thermal stability than that of cellulose and chitosan as well as cellulose–chitosan complex. More interestingly, some hollow tubes with near millimeter length were also observed by SEM. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
《先进技术聚合物》2018,29(7):1895-1901
This study aimed to develop polyelectrolyte‐structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier‐transform infrared, 1H NMR, and 13C NMR spectroscopy. Its nitrogen content was determined by Kjeldahl method. Polyelectrolyte‐structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by SEM. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries.  相似文献   

19.
N-methylmorpholine N-oxide (NMMO) is a known cellulose solvent used in industrial scale (LyoCel process). We have studied interactions between pretreated softwood pulp fibers and aqueous NMMO using nuclear magnetic resonance (NMR) spectroscopic methods, including solid state cross polarisation magic angle spinning (CP-MAS) 13C and 15N spectroscopies, and 1H high resolution MAS NMR spectroscopy. Changes in both cellulose morphology and in accessibility of solvents were observed after the pulp samples that were exposed to solvent species were treated at elevated temperature. Evidence about interactions between cellulose and solvent components was observed already after a heat treatment of 15 min. The crystalline structure of cellulose was seen to remain intact for the first 30 min of heat treatment, at the same time there was a re-distribution of solvent species taking place. After a 90 min heat treatment the crystalline structure of cellulose had experienced major changes, and potential signs of regeneration into cellulose II were observed.  相似文献   

20.
O‐(2,3‐dihydroxypropyl) cellulose (DHPC) samples were synthesized by etherification of cellulose with glycidol (GLY) in a NaOH/urea aqueous solution system under different reaction conditions, so that they had different degrees of ether substitution (DS) in both the overall and regional distributions. The characterization was made by NMR spectroscopy in order to clarify the effects of the molar ratio of in‐fed GLY to anhydroglucose unit and of the reaction temperature not only on the total and regional DSs but also on the molar substitution (MSdhp) for the multireactive dihydroxypropyl group. The evaluation of MSdhp was performed after complete propionylation of each DHPC sample. Determination of molecular weights was also conducted on the propionylated DHPCs by GPC analysis. As a preliminary extension, butyralization of DHPC was undertaken in aqueous solution by using p‐toluenesulfonic acid as catalyst together with butyraldehyde (BuA). Two‐dimensional NMR (1H–13C gHSQC) spectra measurements revealed that the products contained butyral groups, owing to dehydration‐cyclization between the BuA‐carbonyl and the duplicate hydroxyls in the side chain of DHPC. Such butyral derivatives of cellulose are expected to be a promising functional material parallel or superior to poly(vinyl butyral) available for safety glass interlayers, etc. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3590–3597  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号