首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel O-protected lactose (Galβ1→4Glcβ1-) derivative bearing trimethoxysilyl group at the aglycon was developed as a silane coupling agent. Reaction of the coupling agent with tris(2,2′-bipyridine)ruthenium (II) dichloride (Rubpy) doped silica particle gave a Rubpy-doped silica particle peripherally functionalized with O-protected lactose derivative. De-O-protection of the particle with aqueous ammonia provided lactose-coating Rubpy-doped silica particles, combining luminophor encapsulated in silica matrix and carbohydrate having lectin-recognition ability. Specific adhesion of fluorescein isothiocyanate-labeled peanut agglutinin (FITC-PNA) to the lactose-coating Rubpy-doped silica particles was confirmed by fluorescence microscopic analysis.  相似文献   

2.
Summary Monodispersed spherical submicron silica particles were obtained by the precipitation of soluble silica on the surface of preliminary obtained smaller particles. Silica was added into the system at low concentrations to prevent both its polymerization in the solution and the formation of new particles. The kinetics of the particle growth is controlled by the diffusion of soluble silica through the double diffusion layer.  相似文献   

3.
The kinetics of supramolecular crystallization of concentrated suspensions is three-dimensional and follows the Avrami-Erofeev equation: A=1-exp[-(kt)m], where m=4. The rate constant k is proportional to the probability of the appearance of a crystallization center in unit volume in unit time and the linear crystal growth rate, which is determined experimentally.  相似文献   

4.
Surface modification of colloidal silica particles   总被引:2,自引:0,他引:2  
Colloidal silica particles in organic solvents were grafted, using several reagents, in order to make them hydrophobic. The hydrophobicity of the beads could be easily varied. Quasielastic light scattering and transmission electron microscopy experiments showed that no aggregation occurs during the reaction when monofunctional agents are used. Elemental analysis and solid-state NMR measurements gave us the rate of surface modification of the silanol groups. We also studied the rheological behaviour of the grafted particles as a function of the volume fraction in solvents of various hydrophobicity. Hexamethyldisilazane-grafted particles display hard-sphere behaviour in polar solvents such as 2-propanol, but not in alkanes, whereas dimethyldodecylchlorosilane-grafted particles flocculated in polar solvents but could easily be dispersed in apolar solvents. Received: 15 March 2000 Accepted: 11 July 2000  相似文献   

5.
Luminescent silica nanocomposites functionalized with a Eu-complex have been prepared and characterized.The europium complex is composed of 2,2'-bipyridyl(BPy) and 2-(4-bromomethyI)-phenylpropionic acid(BMPPA),which contains highly active benzyl bromide substituents and can covalently bind with poly(4-vinylpyridine)(P4VP)-modified silica nanoparticles(nanoSiO_2P4VP) to form nanoSiO_2P4VPEuBPy composites.Microscopic images revealed that the nanoSiO_2P4VPEuBPy composites easily formed aggregates,due to an inter-particle binding caused by the benzyl bromide among the composites.The as-prepared nanocomposites showed the typical emissions of Eu(III) ions at the wavelengths from 580 nm to 750 nm designated to the ~5D_0→~7F_n transitions.Time-resolved fluorescence decay measurements revealed that the emission lifetime was approximately 0.204 ms and 0.576 ms for the nanoSiO_2EuBPy composites,a little shorter than that in the Eu(BMPPA)_3BPy complex.  相似文献   

6.
Wang J  Topham N  Wu CY 《Talanta》2011,85(5):2655-2661
Nano-sized metal particles, including both elemental and oxidized metals, have received significant interest due to their biotoxicity and presence in a wide range of industrial systems. A novel silica technology has been recently explored to minimize the biotoxicity of metal particles by encapsulating them with an amorphous silica shell. In this study, a method to determine silica coating efficiency on metal particles was developed. Metal particles with silica coating were generated using gas metal arc welding (GMAW) process with a silica precursor tetramethylsilane (TMS) added to the shielding gas. Microwave digestion and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) were employed to solubilize the metal content in the particles and analyze the concentration, respectively. Three acid mixtures were tested to acquire the appropriate digestion method targeting at metals and silica coating. Metal recovery efficiencies of different digestion methods were compared through analysis of spiked samples. HNO3/HF mixture was found to be a more aggressive digestion method for metal particles with silica coating. Aqua regia was able to effectively dissolve metal particles not trapped in the silica shell. Silica coating efficiencies were thus calculated based on the measured concentrations following digestion by HNO3/HF mixture and aqua regia. The results showed 14-39% of welding fume particles were encapsulated in silica coating under various conditions. This newly developed method could also be used to examine the silica coverage on particles of silica shell/metal core structure in other nanotechnology areas.  相似文献   

7.
以NH3 -CO2 作探针分子,采用微量热法测定Cu -Al -O复合物催化剂的表面酸碱性。实验结果表明,样品的酸中心强度顺序是:0.5CAO>CAO>2CAO(0.5CAO、CAO、2CAO分别表示复合物中n(Cu)/n(Al)为0.5、1和2),而碱中心强度顺序是:0.5CAO相似文献   

8.
Four ethylene bis-indenyl ligands containing tethers of various lengths were successfully immobilized on the surface of functionalized silica gel. The strategy of immobilization was based on catalytic thiol-ene coupling of terminal alkene groups in the tethers with surface thiol groups. Obtained materials have high BET surface area and pore volume. The method developed can be used for immobilization of catalytically active bis-indenyl metallocene complexes, thus preventing their dimerization and deactivation.  相似文献   

9.
 The temperature dependence of the dimensions of poly(N-isopropylacrylamide) (PNIPAM) adsorbed on two different colloidal silica particles was studied with dynamic light scattering. The hydrodynamic diameter was measured when the temperature was varied stepwise from 10 to 60 °C. PNIPAM molecules free in solution undergo a conformational transition at the θ temperature. We have found that PNIPAM adsorbed onto silica particles also undergoes a transition below the θ temperature. When a small amount of polymer was adsorbed the coil-to-globule transition at the θ temperature did not occur. Potentiometric titrations showed that the surface charge of the silica particles was not affected by the polymer adsorption. Sodium dodecyl sulfate (SDS) (100–1200 mg/l) was added to improve the stability. The particles with a higher zeta potential required a smaller addition of SDS to prevent coagulation compared to the particles with a smaller surface potential. For low additions of SDS the transition curves of adsorbed PNIPAM were unaffected. For larger additions of SDS the collapse of PNIPAM was shifted to higher temperatures. When as much as 1200 mg/l SDS was added, two regions with weak transitions were observed before the collapse. It was also observed that the presence of SDS results in a smaller adsorption of PNIPAM onto the particles. The addition of SDS strongly increased the magnitude of the electrophoretic mobility of the polymer–particle unit. From the electrophoretic measurements an electrokinetic layer thickness was calculated and it was found to be smaller than the corresponding hydrodynamic layer thickness, as obtained by dynamic light scattering. Received: 14 December 1999/In revised form: 22 February 2000/Accepted: 6 March 2000  相似文献   

10.
Ye Z  Tan M  Wang G  Yuan J 《Talanta》2005,65(1):206-210
Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb3+ chelate, N,N,N1,N1-[2,6-bis(3′-aminomethyl-1′-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb3+ (BPTA-Tb3+), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric methods show that the nanoparticles are spherical and uniform in size, 45 ± 3 nm in diameter, strongly fluorescent with fluorescence quantum yield of 10% and a long fluorescence lifetime of 2.0 ms. The amino groups directly introduced to the nanoparticle’s surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human α-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of α-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10 ng ml−1 to about 100 ng ml−1 with the detection limit of 0.10 ng ml−1. The coefficient variations (CVs) of the method are less than 9.0%, and the recoveries are in the range of 84-98% for human serum sample measurements.  相似文献   

11.
Negatively charged silica particles were investigated at pH 10.0. They were found to be rod-shaped (cylinder) with a diameter of 5–5.5 nm and a full length of 44–67 nm depending on the rod model used. Moreover, the particles were found to be stable against aggregation in the region 0.4–50 mM NaCl. Received: 2 December 1998 Accepted in revised form: 2 February 1999  相似文献   

12.
Rapid and efficient enantioseparation of halogen aryl alcohols and β‐blockers propranolol and pindolol in packed bed CEC (p‐CEC) using as‐prepared submicron porous silica chiral stationary phases (CSPs) has been achieved. Monodispersed 0.66 and 0.81 μm chiral submicron porous silica spheres were prepared using tetramethoxysilane and hexadecyltrimethylammonium bromide, followed by a hydrothermal treatment method with ammonia–ethanol to expand the pore of silica spheres without changing their spherical morphology. A proper specific surface of ca. 230 m2/g and pore sizes average of 6–8 nm were obtained by this method. The submicron porous silica spheres were modified with mono‐6‐phenylcarbamoylated β‐CD via thiol‐en radical addition. They were packed into 9 cm 50 μm id capillary columns with photopolymerized monolithic frits. These submicron CSPs showed greater column efficiency (about 476 000 plates/m for 4‐iodophenyl‐1‐ethanol) and higher resolution than the corresponding 3 μm CSP.  相似文献   

13.
Supramolecular crystals (SC) which appear in concentrated suspensions of monodisperse spherical silica particles (MSSP) can be mechanically destroyed. This destruction occurs because the bonding of structural units (SU) in SC is weak and the interaction forces of SU become locally unbalanced. The SC are destroyed into microblocks with the initial SC structure. The nascent secondary suspension consists of these blocks (clusters). The secondary crystals grow from the clusters and when these clusters are large, the growth is of a dendritic character.  相似文献   

14.
The results of a systematic investigation on the influence of different alkali ion species on the surface charge density, 0, of spherical silica particles (AEROSIL 300) in the pH range between 4 and 8 and with electrolyte concentrations from 0.005 M to 0.3 M are presented. The accuracy of the data may be described by a residual deviation,s( 0 m ), including at least four single measurements:s( 0 m )>0.2C/cm2. The alkali sequence found for the spherical particles is in agreement with data for porous silica published by other authors.  相似文献   

15.
A magneto-genosensing approach for the detection of the three most common pathogenic bacteria in food safety, such as Salmonella, Listeria and Escherichia coli is presented. The methodology is based on the detection of the tagged amplified DNA obtained by single-tagging PCR with a set of specific primers for each pathogen, followed by electrochemical magneto-genosensing on silica magnetic particles. A set of primers were selected for the amplification of the invA (278 bp), prfA (217 bp) and eaeA (151 bp) being one of the primers for each set tagged with fluorescein, biotin and digoxigenin coding for Salmonella enterica, Listeria monocytogenes and E. coli, respectively. The single-tagged amplicons were then immobilized on silica MPs based on the nucleic acid-binding properties of silica particles in the presence of the chaotropic agent as guanidinium thiocyanate. The assessment of the silica MPs as a platform for electrochemical magneto-genosensing is described, including the main parameters to selectively attach longer dsDNA fragments instead of shorter ssDNA primers based on their negative charge density of the sugar-phosphate backbone. This approach resulted to be a promising detection tool with sensing features of rapidity and sensitivity very suitable to be implemented on DNA biosensors and microfluidic platforms.  相似文献   

16.
Summary The trinuclear cluster [Ru3O(Ac)6(py)2(acpy)]PF6 (py: pyridine;acpy: 4-acetylpyridine) has been synthesized and anchored on functionalized silica. Five successive redox couples exhibitingE°=–1.4, –0.98, 0.21, 1.23, and 2.2 Vvs. SHE have been characterized in acetonitrile solutions based on cyclic voltammetry and spectroelectrochemical measurements. The redox and spectroscopic properties are maintained in the immobilized species, allowing its use in optodes and in electron transfer processes.
Synthese eines dreikernigen Rutheniumclusters mit Pyridin- und 4-Acetylpyridinliganden sowie seine Fixierung auf funktionalisiertem Kieselgel
Zusammenfassung Der dreikernige Cluster [Ru3O(Ac)6(py)2(acpy)]PF6(py: Pyridin;acpy: 4-Acetylpyridin) wurde hergestellt und an funktionalisiertem Kieselgel verankert. Mit Hilfe cyclischer Voltammetrie und spektroelektrochemischer Messungen konnten fünf aufeinanderfolgende Redoxpaare beobachtet werden (E 0=–1.4, –0.98, 0.21, 1.23 und 2.2 V bezüglich SHE). Die elektrochemischen und spektroskopischen Eigenschaften bleiben in den fixierten Clustern erhalten und erlauben deren Verwendung in Optoden und bei Elektronenübertragungsprozessen.
  相似文献   

17.
Y. Shen  M. L. Lee 《Chromatographia》1995,41(5-6):665-670
Summary Spherical porous silica particles (10 μm diameter, 300 ? and 80 ? pores), spherical nonporous silica particles (10 μm diameter), and irregular porous silica particles (≈ 10 μm diameter, 80 ? pores) were deactivated with polymethylhydrosiloxane (PS). The surface activities of the deactivated silica particles were investigated using various polar compounds under supercritical fluid chromatography (SFC) conditions (neat CO2), and compared with a commercial C18-bonded phase. The small pore (80 ?) silica particles could be more completely deactivated than larger pore (300 ?) and nonporous silica particles. The success of the PS deactivation method is ascribed to the excellent match between the reactive groups on the polymer backbone and the silica surface, and the formation of a highly crosslinked polymeric layer over the surface. Physical processes, such as adsorption and desorption of the deactivation reagent on the surface and diffusion from the surface, were found to have important effects on the deactivation. Using capillary columns packed with PS deactivated silica particles, typical polar organic compounds, including hydroxyl-containing compounds, carbonyl-containing compounds, free amines, and free carboxylic acids, were separated by SFC and compared with results from a commercial C18-bonded phase. While the results clearly show that the PS deactivated particles were more inert than the C18-bonded phase, better deactivation methods are still needed for separation of free acids and alkylamines.  相似文献   

18.
Volatile organic compounds (VOCs) are growing pollutants now that cause the serious environmental pollution and threaten human health. The functionalized ordered mesoporous silica (FOMS) has attracted considerable attention in adsorbing VOCs. In this paper, the molecular dynamics simulation was used to simulate the adsorption performance of FOMS on VOCs (acetone, ethyl acetate and toluene). After simulating different pore sizes (2 nm, 3 nm and 4 nm) adsorption performances of ordered mesoporous silica (OMS) on VOCs, OMS with a pore size of 4 nm was selected to further study the influence of functional groups (vinyl, methyl, and phenyl). The following law was obtained: the saturated adsorption capacities of vinyl-functionalized OMS (V-FOMS) to acetone, ethyl acetate and toluene were 3.045 mmol.g?1, 2.568 mmol.g?1 and 1.976 mmol.g?1 respectively; the saturated adsorption capacities of methyl-functionalized OMS (M-FOMS) to acetone, ethyl acetate and toluene were 2.798 mmol.g?1, 2.312 mmol.g?1 and 1.698 mmol.g?1 respectively; the saturated adsorption capacities of phenyl-functionalized OMS (P-FOMS) to acetone, ethyl acetate and toluene were 2.124 mmol.g?1, 1.941 mmol.g?1 and 1.539 mmol.g?1 respectively. These results show that the adsorption ability of FOMS for different adsorbates follows the sequence of acetone > ethyl acetate > toluene. Furthermore, the interaction between functional groups (vinyl, methyl and phenyl) in FOMS and VOCs was explored. It is found that the interaction between different functional groups and adsorbates is different (interaction energy effect). This interaction energy effect promotes FOMS to better adsorb VOCs. This work would provide fundamental understanding and guidance for the development of novel adsorption materials for the adsorption of VOCs.  相似文献   

19.
Characterization of polymer-coated silica particles by microelectrophoresis   总被引:1,自引:0,他引:1  
Electrophoretic mobility measurements have been used to characterize monodispersed colloidal particles of silica, silica coated with alumina (cores), of these cores incorporating a dye (pigments), and finally of pigments coated with polymers. The latter consisted of poly(divinylbenzene), of poly(vinylbenzyl chloride), and of their copolymers, synthesized directly on the core or pigment particles, with and without subsequent sulfonation.  相似文献   

20.
Qu Q  Tang X  Wang C  Yang G  Hu X  Lu X  Liu Y  Yan C 《Journal of separation science》2006,29(13):2098-2102
Fused-silica capillarieswere packed with porous 1 microm bare silica microspheres and immobilized by potassium silicate-formamide in order to obtain columns with silica-based monolithic packing. After curing, the particle-fixed monolithic columns were octadecylated insitu with dimethyloctadecylchlorosilane. The columns were mechanically strong and permeable. No noticeable loss in efficiency was found after using a column continuously for 1 month. The performances of the particle-fixed silica monolithic columns were evaluated for CEC under RP conditions. High separation efficiency (about125 200 plates/m) was obtained by using these new types of columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号