首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
研究了有机薄膜晶体管的二氧化硅栅绝缘层的性质。二氧化硅绝缘层的制备采用热生长法,氧化气氛是O2(g)+H2O(g),工艺为干氧-湿氧-干氧的氧化过程。制得的绝缘层漏电流在10-9 A左右。以该二氧化硅作为有机薄膜晶体管的栅绝缘层,并五苯作为有源层制作了有机薄膜晶体管器件。实验表明采用十八烷基三氯硅烷(OTS)进行表面修饰的器件具有OTS/SiO2双绝缘层结构,可以有效地降低SiO2栅绝缘层的表面能并改善表面的平整度。修饰后器件的场效应迁移率提高了1.5倍、漏电流从10-9 A降到10-10 A、阈值电压降低了5 V、开关电流比从104增加到105。结果显示具有OTS/SiO2双绝缘层的器件结构能有效改进有机薄膜晶体管的性能。  相似文献   

2.
朱敏亮  罗皓  王丽萍  于贵  刘云圻 《化学学报》2012,70(15):1599-1603
N,N'-二苯基-1,4-苯二胺为原料, 合成了含硫和氮杂原子的并五苯类似物, 用可见-紫外吸收光谱和电化学测试对这类化合物进行表征, 确定了其光学带隙及轨道能级, 与并五苯相比它们具有低的最高占用分子轨道能级. 得到了三苯并二噻嗪的单晶结构, 分子具有平面结构, 分子间具有强的π…π相互作用和N…S相互作用. 首次将该类并五苯类似物应用于有机薄膜场效应晶体管中, 器件显示好的场效应特性, 迁移率为0.01 cm2·V-1·s-1.  相似文献   

3.
Gallium-doped n-type CdS nanowires (NWs) were successfully synthesized via a thermal evaporation method. The conductivities of the CdS NWs were dramatically improved by nearly nine orders of magnitude after Ga doping, and could be further tuned over a wide range by adjusting the doping level. High-performance metal-insulator-semiconductor field-effect transistors (MISFETs) were constructed based on the single CdS : Ga NW with high-κ Si(3)N(4) dielectrics and top-gate geometries. In contrast to back-gate FETs, the MISFETs revealed a substantial improvement in device performance. Nano-light emitting diodes (nanoLEDs) were fabricated from the CdS : Ga NWs by using a n-NW/p(+)-Si substrate hybrid device structure. The nanoLEDs showed a bright yellow emission at a low forward bias. It is expected that the Ga-doped CdS NWs with controlled electrical transport properties will have important applications in nano-optoelectronic devices.  相似文献   

4.
Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following "donor-acceptor" principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm(2) V(-1) s(-1) with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC(71)BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10(-3) cm(2) V(-1) s(-1), and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure-performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications.  相似文献   

5.
High-performance air-stable n-type field-effect transistors based on single-crystalline submicro- and nanometer ribbons of copper hexadecafluorophthalocyanine (F(16)CuPc) were studied by using a novel device configuration. These submicro- and nanometer ribbons were synthesized by a physical vapor transport technique and characterized by the powder X-ray diffraction pattern and selected area electron diffraction pattern of transmission electron microscopy. They were found to crystallize in a structure different from that of copper phthalocyanine. These single-crystalline submicro- and nanometer ribbons could be in situ grown along the surface of Si/SiO(2) substrates during synthesis. The intimate contact between the crystal and the insulator surface generated by the "in situ growing process" was free from the general disadvantages of the handpicking process for the fabrication of organic single-crystal devices. High performance was observed in devices with an asymmetrical drain/source (Au/Ag) electrode configuration because in such devices a stepwise energy level between the electrodes and the lowest unoccupied molecular orbital of F(16)CuPc was built, which was beneficial to electron injection and transport. The field-effect mobility of such devices was calculated to be approximately 0.2 cm(2) V(-)(1) s(-)(1) with the on/off ratio at approximately 6 x 10(4). The performances of the transistors were air stable and highly reproducible.  相似文献   

6.
2,7-Dialkyl[1]benzothieno[3,2-b]benzothiophenes were tested as solution-processible molecular semiconductors. Thin films of the organic semiconductors deposited on Si/SiO2 substrates by spin coating have well-ordered structures as confirmed by XRD analysis. Evaluations of the devices under ambient conditions showed typical p-channel FET responses with the field-effect mobility higher than 1.0 cm2 V-1 s-1 and Ion/Ioff of approximately 10(7).  相似文献   

7.
The blend films of small-molecule semiconductors with insulating polymers exhibit not only excellent solution processability but also superior performance characteristics in organic thin-film transistors (OTFTs) over those of neat small-molecule semiconductors. To understand the underlying mechanism, we studied triethylsilylethynyl anthradithiophene (TESADT) with small amounts of impurity formed by weak UV exposure. OTFTs with neat impure TESADT had drastically reduced field-effect mobility (<10(-5) cm(2)/(V s)), and a disappearance of the high-temperature crystal phase was observed for neat impure TESADT. However, the mobility of the blend films of the UV-exposed TESADT with poly(α-methylstyrene) (PαMS) is recovered to that of a fresh TESADT-PαMS blend (0.040 cm(2)/(V s)), and the phase transition characteristics partly return to those of fresh TESADT films. These results are corroborated by OTFT results on "aged" TIPS-pentacene. These observations, coupled with the results of neutron reflectivity study, indicate that the formation of a vertically phase-separated layer of crystalline small-molecule semiconductors allows the impurity species to remain preferentially in the adjacent polymer-rich layer. Such a "zone-refinement effect" in blend semiconductors effectively removes the impurity species that are detrimental to organic electronic devices from the critical charge-transporting interface region.  相似文献   

8.
The neutral cluster beam deposition (NCBD) method has been applied to produce and characterize organic thin-film transistors (OTFTs) based upon tetracene and pentacene molecules as active layers. Organic thin films were prepared by the NCBD method on hexamethyldisilazane (HMDS)-untreated and -pretreated silicon dioxide (SiO2) substrates at room temperature. The surface morphology and structures for the tetracene and pentacene thin films were examined by atomic force microscopy (AFM) and X-ray diffraction (XRD). The measurements demonstrate that the weakly bound and highly directional neutral cluster beams are efficient in producing high-quality single-crystalline thin films with uniform, smooth surfaces and that SiO2 surface treatment with HMDS enhances the crystallinity of the pentacene thin-film phase. Tetracene- and pentacene-based OTFTs with the top-contact structure showed typical source-drain current modulation behavior with different gate voltages. Device parameters such as hole carrier mobility, current on/off ratio, threshold voltage, and subthreshold slope have been derived from the current-voltage characteristics together with the effects of surface treatment with HMDS. In particular, the high field-effect room-temperature mobilities for the HMDS-untreated OTFTs are found to be comparable to the most widely reported values for the respective untreated tetracene and pentacene thin-film transistors. The device performance strongly correlates with the surface morphology, and the structural properties of the organic thin films are discussed.  相似文献   

9.
To investigate the effects of the phase state (ordered or disordered) of self-assembled monolayers (SAMs) on the growth mode of pentacene films and the performance of organic thin-film transistors (OTFTs), we deposited pentacene molecules on SAMs of octadecyltrichlorosilane (ODTS) with different alkyl-chain orientations at various substrate temperatures (30, 60, and 90 degrees C). We found that the SAM phase state played an important role in both cases. Pentacene films grown on relatively highly ordered SAMs were found to have a higher crystallinity and a better interconnectivity between the pentacene domains, which directly serves to enhance the field-effect mobility, than those grown on disordered SAMs. Furthermore, the differences in crystallinity and field-effect mobility between pentacene films grown on ordered and disordered substrates increased with increasing substrate temperature. These results can be possibly explained by (1) a quasi-epitaxy growth of the pentacene film on the ordered ODTS monolayer and (2) the temperature-dependent alkyl chain mobility of the ODTS monolayers.  相似文献   

10.
The use of organic thin-film transistors (OTFTs) in sensorics is relatively new. Although electronic noses, electronic textiles and disposable biochemical sensors appear to be viable applications for this type of devices, the benefits of the technology still have to be proven. This paper aims to provide a review of the recent advances in the area of chemically sensitive field-effect devices based on organic thin-film transistors (OTFTs), with emphasis on bioanalytical applications. Detection principle, device configuration, materials and fabrication processes as well as sensor performances will be discussed, with emphasis on the potential for implementation in real applications and the important challenges ahead.  相似文献   

11.
Oleic acid-stabilized silver nanoparticles prepared by a facile synthesis afforded highly conductive elements upon proper annealing. Regioregular polythiophene-based thin-film transistors (OTFTs) using source/drain electrodes prepared from these silver nanoparticles provided excellent field-effect characteristics, despite a significant difference between the work function of silver and the HOMO of polythiophene semiconductor. This was attributable to conductive doping of the semiconductor interface by residual oleic acid or its thermally transformed derivative from the silver electrodes, thus enabling ohmic contact formation. This is in sharp contrast to the OTFTs with silver electrodes fabricated from both vacuum deposition and oleylamine-stabilized silver nanoparticles, which exhibited markedly lower mobility and current on/off ratio, a consequence of energetic mismatch of the electrode/semiconductor pairs.  相似文献   

12.
The synthesis of two well-solubilized [60]methanofullerene derivatives ( p- EHO-PCBM and p- EHO-PCBA) is presented for usage in organic solar cells and in field-effect transistors. The para position of the PCBM's phenyl ring was substituted with a branched alkoxy side chain, which contributes to higher solubility, facilitating synthesis, purification, and processing. We find a small change of the open-circuit voltage ( V oc) as a slight improvement in performance upon application in P3HT/[60]methanofullerene bulk-heterojunction-photovoltaic cells, when compared to PCBM, because of the electron donation of the alkoxy group. In the case of the devices with a TiO x layer, the best power conversion efficiencies (PCE, eta e) is observed in a layered structure of P3HT/ p- EHO-PCBA/TiO x (eta e = 2.6%), which slightly exceeds that of P3HT/PCBM/TiO x (eta e = 2.3%) under conditions reported here. This can be attributed, in part, to the carboxylic acid group in p- EHO-PCBA that leads to an effective interface interaction between the active layer and TiO x phase. In addition, n-channel organic field-effect transistor (OFET) devices were fabricated with thin films of p- EHO-PCBM and p- EHO-PCBA, respectively cast from solution on SiO 2/Si substrates. The values of field-effect mobility (mu) for p- EHO-PCBM and p- EHO-PCBA are 1 x 10 (-2) and 1.6 x 10 (-3) cm (2)/V.s, respectively. The results in this paper demonstrate the effects of a carboxylic acid group and an electron-donating substituent in [60]methanofullerenes as n-type materials with respect to organic solar cells and OFET applications.  相似文献   

13.
Air-stable organic thin-film transistor (OTFT) sensors fabricated using spin-cast films of 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (OBNc) demonstrated improved chemical vapor sensitivity and selectivity relative to vacuum-deposited phthalocyanine (H(2)Pc) OTFTs. UV-vis spectroscopy data show that annealed spin-cast OBNc films exhibit a red-shift in the OBNc Q-band λ(max) which is generally diagnostic of improved π-orbital overlap in phthalocyanine ring systems. Annealed OBNc OTFTs have mobilities of 0.06 cm(2) V(-1) s(-1), low threshold voltages (|V(th)| < 1 V), and on/off ratios greater than 10(6). These air-stable device parameters are utilized for sensing modalities which enhance the sensitivity and selectivity of OBNc OTFTs relative to H(2)Pc OTFTs. While both sensors exhibit mobility decreases for all analytes, only OBNc OTFTs exhibit V(th) changes for highly polar/nonpolar analytes. The observed mobility decreases for both sensors are consistent with electron donation trends via hydrogen bonding by basic analytes. In contrast, V(th) changes for OBNc sensors appear to correlate with the analyte's octanol-water partition coefficient, consistent with polar molecules stabilizing charge in the organic semiconductor film. The analyte induced V(th) changes for OBNc OTFTs can be employed to develop selective multiparameter sensors which can sense analyte stabilized fixed charge in the film.  相似文献   

14.
Non‐chlorinated solvents are highly preferable for organic electronic processing due to their environmentally friendly characteristics. Four different halogen‐free solvents, tetrafuran, toluene, meta‐xylene and 1,2,4‐trimethylbenzene, were selected to fabricate n‐channel organic thin film transistors (OTFTs) based on 3‐hexylundecyl substituted naphthalene diimides fused with (1,3‐dithiol‐2‐ylidene)malononitrile groups (NDI3HU‐DTYM2). The OTFTs based on NDI3HU‐DTYM2 showed electron mobility of up to 1.37 cm2·V?1·s?1 under ambient condition. This is among the highest device performance for n‐channel OTFTs processed from halogen‐free solvents. The different thin‐film morphologies, from featureless low crystalline morphology to well‐aligned nanofibres, have a great effect on the device performance. These results might shed some light on solvent selection and the resulting solution process for organic electronic devices.  相似文献   

15.
We present an integrated system with automated sample fabrication for combinatorial investigations of solution-processed organic materials. To illustrate the applicability of the system, we give examples of typical experimental results with organic electronic devices. Organic light emitting diodes (OLEDs) based on a poly-(N-vinylcarbazole) matrix system with small molecule hole-transporter N,N′-Bis(3-methylphenyl)-N,N′-diphenyl-benzidine (TPD) and electron transporter 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) were optimized. In a single experimental run, the optimum range of TPD and PBD concentrations has been determined. Furthermore, we screened the influence of a gate dielectric modification with poly(methyl silsesquioxane) in organic field effect transistors and show that the choice of the material system, which constitutes the interface between the gate dielectric and the organic semiconductor, modulates the mobility of the field-effect device by more than two orders of magnitude. Finally, we present a combinatorial study of the influence of PEDOT-PSS and P3HT-PC61BM layer thickness variation in organic photo voltaic cells. To summarize, we describe the possibilities of a combinatorial tool for solution based multilayer devices comprising functional materials. The tool is applicable to a vast variety of such materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1587–1593, 2010  相似文献   

16.
A series of 2,6-diaryl-substituted naphtho[1,8-bc:5,4-b'c']dithiophene derivatives 2-6, whose aryl groups include 5-hexyl-2-thienyl, 2,2'-bithiophen-5-yl, phenyl, 2-naphthyl, and 4-biphenylyl, was synthesized by the palladium-catalyzed Suzuki-Miyaura coupling and utilized as active layers of organic field-effect transistors (OFETs). All devices fabricated using vapor-deposited thin films of these compounds showed typical p-type FET characteristics. The mobilities are relatively good and widely range from 10(-4) to 10(-1) cm2 V(-1) s(-1), depending on the substituent groups. Among them, the mobilities of the devices using films of 3-5 tend to increase with the increasing temperature of the Si/SiO2 substrate during film deposition. In particular, the device based on the naphthyl derivative 5, when fabricated at 140 degrees C, marked a high mobility of 0.11 cm2 V(-1) s(-1) with an on/off ratio of 10(5), which is a top class of performance among organic thin-film transistors. Studies of X-ray diffractograms (XRDs) have revealed that the film of 4 and 5 is composed of two kinds of crystal grains with different phases, so-called "single-crystal phase" and "thin film phase", and that the proportion of the thin film phase increases with an increase of the substrate temperature. In the thin film phase the assembled molecules stand nearly upright on the substrate in such a way as to be favorable to carrier migration.  相似文献   

17.
Lei T  Zhou Y  Cheng CY  Cao Y  Peng Y  Bian J  Pei J 《Organic letters》2011,13(10):2642-2645
An efficient synthetic approach to a series of aceno[2,1,3]thiadiazole derivatives is described. 2-TIPS and 2-TES molecules exhibited different crystal packings, and 2-TIPS show good device performances with hole mobility up to 0.4 cm(2) V(-1) s(-1) and an average mobility of 0.15 cm(2) V(-1) s(-1) as the active material for organic field-effect transistors. All of the results demonstrate these aceno[2,1,3]thiadiazole derivatives as promising materials for optoelectronic devices.  相似文献   

18.
The development of new organic semiconductors with improved electrical performance and enhanced environmental stability is the focus of considerable research activity. This paper presents the design, synthesis, optical and electrochemical characterization, crystal packing, modeling and thin film morphology, and organic thin film field effect transistor (OTFT) device data analysis for a novel 2,6-bis[2-(4-pentylphenyl)vinyl]anthracene (DPPVAnt) organic semiconductor. We observed a hole mobility of up to 1.28 cm2/V.s and on/off current ratios greater than 107 for OTFTs fabricated using DPPVAnt as an active semiconductor layer. The mobility value is comparable to that of the current best p-type semiconductor pentacene-based device performance. In addition, we found a very interesting relationship between the charge mobility and molecule crystal packing in addition to the thin film orientation and morphology of the semiconductor as determined from single-crystal molecule packing study, thin film X-ray diffraction, and AFM measurements. The high performance of the semiconductor ranks among the best performing p-type organic semiconductors reported so far and will be a very good candidate for applications in organic electronic devices.  相似文献   

19.
Two cyclic carbazolenevinylene dimers 1 and 2 were synthesized by McMurry coupling reactions. A linear compound 3 was also prepared for comparison. Compounds 1-3 were fully characterized by means of NMR spectroscopy, HRMS, elemental analysis, and UV/Vis absorption spectroscopy. Quantum chemical simulations showed that the cyclic compounds possessed smaller HOMO-LUMO gaps and more extended conjugation. The UV/Vis absorption spectra of the cyclic compounds showed blueshifts compared with that of the linear compound 3. Time-dependent DFT (TD-DFT) analysis revealed that this was due to the different selection rules for molecules with cyclic and linear architectures. The cyclic conformation also significantly affected the molecular ordering in the solid state. The X-ray crystal structure of 1 showed partial pi-pi overlapping between the adjacent molecules. Thin films of 1-3 were fabricated by the vacuum-deposition method on Si/SiO(2) substrates. Multicrystalline thin films were obtained from compounds 1 and 2, but only amorphous thin films could be obtained for the linear compound 3. Another important difference between the cyclic and linear compounds was the reduced reorganization energy for the cyclic compounds. These two facts have resulted in improved field-effect transistor (FET) mobilities for the cyclic compounds compared with the linear compound. In addition, as the substrate temperature has a significant influence on the morphology and the degree of crystallinity of the thin films deposited, the device performance could be optimized by varying the substrate temperature. The FET devices based on 2 gave the highest mobility of 0.013 cm(2) V(-1) s(-1). The results showed that carbazole derivatives with cyclic structures might make better FETs.  相似文献   

20.
Heptacene ( 1 ) has been produced via a monoketone precursor, 2 , which was prepared from 1,2,4,5-tetrabromobenzene in nine steps in a total yield of 10 %. Compound 2 was converted to 1 quantitatively by heating at 202 °C. Heptacene exhibited high thermal stability in the solid state without any observable change over two months. To investigate the potential value of 1 as a material for p-type organic field-effect transistors (OFETs), top-contact OFET devices were fabricated by vacuum deposition of 1 onto a hexamethyldisilazane (HMDS)/SiO2/Si substrate. The best hole mobility performance was 2.2 cm2 V−1 s−1. This is the first report of stable heptacene being used in an effective device and examined for its charge carrier properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号