首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The viscous fingering of miscible flow displacements in a homogeneous porous media is examined to determine the effects of an anisotropic dispersion tensor on the development of the instability. In particular, the role of velocity-dependent transverse and longitudinal dispersions is investigated through linear stability analysis and nonlinear simulations. It is found that an isotropic velocity-dependent dispersion tensor does not affect substantially the development of the instability and effectively has the same effect as molecular diffusion. On the other hand, an anisotropic velocity-dependent dispersion tensor results in different instability characteristics and more intricate finger structures. It is shown that anisotropic dispersion has profound effects on the development of the fingers and on the mechanisms of interactions between neighboring fingers. The development of the new finger structures is explained by examining the velocity field and characterized qualitatively through a spectral analysis of the average concentration and an analysis of the variations of the sweep efficiency and relative contact area.  相似文献   

2.
In this study, the coupled effect of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles (SP) in saturated sand was undertaken. Three polydispersive SP populations (silt particles with the median of 3.5, 9.5 and 18.3 \(\upmu \)m) were investigated using a pulse injection technique. High ionic strengths were used and vary from 0 to 600 mM (NaCl). Two high velocities were tested: 0.15 and 0.30 cm/s. Suspended particles recovery and deposition kinetics were strongly dependent on the solution chemistry, the hydrodynamics, and the suspended particles size, with greater deposition occurring for increasing ionic strength, lower flow velocity, and larger ratios of the median diameter of the SP to the median sand grain diameter. A shift between the extended Derjaguin–Landau–Verwey–Overbeek theory prediction (the particles and sand grain surfaces are considered chemically and topographically homogeneous) and the experimental results for certain ionic strength was observed. So, as reported in recent literature, effects of surface heterogeneities should be considered. The residence time of the non-captured particles is dependent on ionic strength and hydrodynamic. A relationship between the deposition kinetics, particle and grain sizes, flow velocity, and ionic strength is proposed.  相似文献   

3.
Recently, it has been suggested that Darcy's Law might not be applicable for modelling miscible, density-dependent flow in porous media. To investigate this, three sets of careful laboratory column experiments were performed on coarse and medium sands, consisting of upward displacement of water by sodium chloride solutions with concentrations ranging from 5 to 200g/l. Data on salt concentrations and water pressures were collected in horizontal transects along the flow direction. Salt concentration data were also collected in the influent and exit lines. The experimental data were analysed using a simplified approach based on Darcy's Law alone, applied with the assumption of a sharp interface. Darcy's Law was used to estimate porous medium permeability by fitting predictions to experimental data. Consistent estimates of permeability were obtained for each set of experiments. The results indicate that Darcy's Law adequately describes high concentration displacements through saturated coarse- and medium-grained porous media.  相似文献   

4.
This study is focused on the transport of Pseudomonas (P.) putida bacterial cells in a 3-D model aquifer. The pilot-scale aquifer consisted of a rectangular glass tank with internal dimensions: 120?cm length, 48?cm width, and 50?cm height, carefully packed with well-characterized quartz sand. The P. putida decay was adequately represented by a first-order model. Transport experiments with a conservative tracer and P. putida were conducted to characterize the aquifer and to investigate the bacterial behavior during transport in water saturated porous media. A 3-D, finite-difference numerical model for bacterial transport in saturated, homogeneous porous media was developed and was used to successfully fit the experimental data. Furthermore, theoretical interaction energy calculations suggested that the extended-DLVO theory seems to predict bacteria attachment onto the aquifer sand better than the classical DLVO theory.  相似文献   

5.
Direct contact heat transfer between water and a heat transfer oil was investigated under non-boiling conditions in co-current turbulent flow through a horizontal concentric annulus. The ratio of the inner pipe diameter to the outer pipe diameter (aspect ratio) κ = 0.730−0.816; total liquid velocity (mixture velocity) VT = 0.42−1.1 m/s; inlet oil temperature Toi = 38−94°C; oil volume fraction in the flowing mixture φo = 0.25−0.75 were varied and their effects on the overall volumetric heat transfer coefficient Uv were determined at constant interfacial tension of 48 dynes/cm.

It was found that, in each concentric pipe set, the overall volumetric heat transfer coefficient increased with increasing dispersed phase volume fraction at each constant mixture velocity and reached a maximum at around φo = φw ≈ 0.5. The maximum Uv values increased with increasing total liquid velocity and decreasing aspect ratio of the annulus. The volumetric heat transfer coefficient was also found to increase with increasing inlet oil temperature and increasing total liquid velocity but to decrease with length along the test section keeping all other parameters constant. Empirical expressions for the volumetric heat transfer coefficient were obtained within the ranges of the experimental parameters.  相似文献   


6.
An experimental investigation was carried out to study the augmentation of heat transfer in saturated pool boiling of a liquid water layer on a heated horizontal stainless steel plate by roughing the surface and/or covering it with a single layer of stainless steel screen. The results were presented in terms of the boiling curves. Effects of various parameters – the surface roughness, liquid level and size of the stainless steel mesh on the boiling heat transfer were examined in detail. The measured data clearly indicated that a lowering of the liquid level from 60 to 5?mm in water depth causes heat transfer reduction. Roughing the surface was found to sig- nificantly enhance the heat transfer. Use a layer of metal screen to cover the heated surface was shown to substantially augment the heat transfer especially for a shallow water layer if the mesh size is comparable with the bubble departure diameter. Covering the rough surface with the metal mesh, however, reduced the heat transfer.  相似文献   

7.
Groundwater contamination by dense nonaqueous phase liquids (DNAPLs) has received increasing attention in the last decade. The fingering process of DNAPL migration in porous media remains an incompletely understood subject. The main reason is that natural porous media are opaque and hence very few visualizations are available. This paper presents the visual results of two-dimensional experiments in a glass tank in which DNAPL penetrated into water-saturated homogeneous porous media. The results provide a clear reference for conceptual models of DNAPL finger development due to immiscible flow instabilities. The fingering process can be divided into two stages, that is, the finger initiation stage and the finger elongation stage. At the finger initiation stage, many DNAPL protuberances appear at the interface between tetrachloroethylene (PCE) and water along the surface of the porous media. During the finger elongation stage, some relatively larger protuberances develop into primary fingers. Secondary fingers may develop on the existing primary fingers. The fingers grew downwardly in a winding manner with the mechanisms of shielding, tip-growing, splitting, and coalescing. The fingers grew linearly with time and had simi-lar growth rate at the finger elongation stage. The average wavelength (space between fingers) of the primary fingers was 0.051m and the average PCE content in the region with fingers was 2.5% (7.0% saturation).  相似文献   

8.
圆柱尾流的绝对不稳定性   总被引:3,自引:0,他引:3  
在水槽和低湍流度水洞中进行亚临界雷诺数圆柱尾流稳定性实验来流速度由零缓慢增长到一定值后保持不变,稳定足够长时间后,在流向某站位处给流场一个有限幅值的脉冲扰动,测量扰动前后相当长时间内下游尾流速度信号的变化情况当雷诺数处于高亚临界值时,未受扰动的尾流速度脉动很小,处于定常状态,但对近尾流进行脉冲扰动后,能够激发出不衰减的旋涡脱落发现扰动位置限制在圆柱后一定范围内才能有效,再往下游则扰动随时间衰减.说明圆柱近尾流中存在一个绝对不稳定区,在该区域内的扰动将在当地放大,经过复杂的演化,最后形成不衰减的旋涡脱落.  相似文献   

9.
Recently, researchers in coastal engineering have paid more attention to the role of sediment (particulate organic matter adsorbed on fine solid particles, diameter range 1– $100~\upmu $ m) in considering the biodiversity of estuaries. In this study, permeability reduction of saturated sand columns by sediment retention is investigated through laboratory experiments. Water-based sediment was injected through vertical sand columns under a constant water head difference, with different flow rates, porosities of the sand columns, and the chemical properties of sediment. It was found that the permeability reduction was uniquely correlated with flow rate and sediment properties; that is, increasing flow rate or using sediment containing high amounts of organic matter causes a significant reduction in permeability. Furthermore, an approximate experimental equation is proposed to predict the retention mass of sediment. This equation can predict the retention mass with a relative error of less than 5 %. In addition, a new model is proposed to determine the permeability reduction by sediment retention. This model could predict the permeability reduction with a relative error of 10 %.  相似文献   

10.
The understanding of simple laminar flow in tubes has often been used to interpret the more complicated flow in porous media. A study of the motion of two immiscible liquids in closed tubes with relatively large diameter (> 0.3 cm i.d), was conducted in order to examine the influence of wetting and nonwetting liquids on the flow behavior. The results indicate that the wetting properties of the fluids with regard to the tube wall have a major efffect on the formation and motion of long bubbles. A physically based model was used to predict the velocity and the conditions for no motion of bubbles and drops in tubes. These results were used to interpret the nature of oil and water flow in porous media. Experiments in which the wetting liquid was displaced by the nonwetting, or vice versa, were conducted by injecting the displacing liquid at a constant flux at the center of a two-dimensional chamber saturated with the displaced liquid. The influence of wetting-nonwetting characteristics on the quantity of liquid displaced, the shape of the interface between the two liquids, and the interpretation of the no motion radius in a closed tube to the case of a porous medium are discussed. It would appear that the no motion radius gives a good indication of the minimum width of a nonwetting penetrating finger and the maximum width of nonwetting ganglia left by drainage.  相似文献   

11.
为研究浅埋炸药爆炸形貌及其冲击作用效应,提出了一套新型试验工装,通过浅埋砂爆试验,系统探究了浅埋爆炸过程中冲击波的传播、爆炸产物与砂土的喷射轨迹、靶板的变形形貌以及爆炸载荷的空间分布情况。结果表明:浅埋爆炸在空气中产生冲击波,其传播速度大于爆炸产物与砂土的喷射速度;起爆后的爆炸产物与砂土迅速向外喷射,体积随时间不断膨胀,撞击到靶板后向四周扩散;通过特 殊设计的试验工装与靶板,定性得出浅埋砂爆载荷产生的冲量在空间中呈非均匀分布,即中间最大,向四周逐渐减小。对比分析2次不同试验,发现炸药埋深影响爆炸产物和砂土喷射时的相对位置:埋深较小时,爆炸产物会冲破覆盖的砂层,直接作用到靶板;埋深较大时,爆炸产物基本被砂层包覆,随砂土共同作用到靶板;此外,增大炸药埋深会延缓爆炸产物与砂土的喷射时间。砂土的类型直接影响靶板的变形形貌,按北约标准AEP-55配做的砂土不仅使靶板产生整体弯曲变形,还在靶板上形成大量凹坑,产生侵彻效果,而普通的河砂仅使靶板产生整体弯曲变形,无明显的侵彻效果。  相似文献   

12.
冲击荷载作用下混凝土动态力学性能数值模拟研究   总被引:4,自引:0,他引:4  
利用直锥变截面式Φ74 mm SHPB对混凝土和水泥砂浆材料进行了三种不同冲击速度下的动态力学性能实验,分析了其冲击速度对混凝土力学性能的影响规律。应用刚性板冲击加载的方式进行了混凝土动力响应的数值模拟研究,数值模拟结果与实验结果吻合较好。数值模拟表明:混凝土的峰值应力随着冲击速度的增大而增大,混凝土是一种率敏感材料;随着粗骨料体积含量增大,冲击荷载作用下混凝土的峰值应力呈现先增大后减小的趋势,粗骨料体积含量为40%时混凝土峰值应力最大;保持粗骨料最大粒径不变,随着粗骨料最小粒径的增大,混凝土的峰值应力逐渐减小;保持粗骨料最小粒径不变,随着粗骨料最大粒径的增大,混凝土的峰值应力呈现先增大后减小的趋势,数值模拟结果为混凝土的工程应用提供了理论依据和技术支撑  相似文献   

13.
Wetting front instability or fingering experiments were conducted in three-dimensional infiltration columns, featuring stratified fine-over-coarse texture porous media, to investigate the influences of various soil and wetting phase properties on finger diameter and propagation velocity. The system parameter varied in this study included permeability, system flux rate, media size and gradation uniformity, initial moisture content, viscosity, density, and surface tension. The influence of each parameter is discussed and compared, where applicable, to the finding of previous studies. Finger diameter and velocity data were acquired using a neutron radioscopy based, real-time imaging system. Through the use of the imaging system, a very accurate and reliable experimental data set was produced for three-dimensional fingering events.  相似文献   

14.
In many groundwater systems, fluid density and viscosity may vary in space and time as a function of changes in concentration and temperature of the fluid. When dense groundwater plumes interact with less dense ambient groundwater, these density variations can significantly affect flow and transport processes. Under certain conditions, gravitational instabilities in the form of lobe-shaped fingers can occur. This process is significant because it can lead to more rapid and spatially extensive solute transport. This paper presents new experiments carried out in a sand filled glass flow container under both fully saturated and variably-saturated conditions and focuses upon the processes that occur at the capillary fringe and below the water table, as affected by a dense contaminant plumes migration through the unsaturated zone. Source fluids stained with Rhodamine-WT were introduced at the upper boundary of the tank at a range of low and high densities. In addition to the fluid density gradients and porous medium permeability that determine the onset conditions for instabilities in fully saturated experiments, volumetric water content appears critical in the variably-saturated laboratory runs. Plume behaviour at the water table appears dependent upon the density of the fluid that accumulates there. For neutral and low density fluids, plumes accumulate at the water table and then spread laterally above it and the water table forms a barrier to further vertical flow as pore water velocities reduce with increasing water content. For medium and high density fluids, vertical movement continues as instabilities form at the capillary fringe and fingers begin to grow at the water table boundary and move downwards into the saturated zone. In these cases, lateral spreading of the plume is small. Despite these more qualitative observations, the exact nature of the relevant stability criteria for the onset and growth of instabilities in variably-saturated porous media presently remain unclear. All experimental results suggest, however, that the unsaturated zone and position of the water table must be considered in contaminant studies in order to predict the migration pathways, rates and ultimate fate of dense contaminant plumes. It is possible that the results of experiments presented in this paper could form a useful basis for the testing of variable-density (and variably-saturated) groundwater flow and solute transport numerical codes because they offer controlled physical laboratory analogs for comparison. They also provide a strong basis for the development of more rigorous mathematical formulations that are likely to be either developed or tested using numerical flow and solute transport simulators.  相似文献   

15.
A74-mm-diameter Split Hopkinson pressure bar was used to carry out the dynamic compression experiment of concrete made of desert sand.The dynamic failure processes of concrete different in specimen size,impact velocity,desert sand replacement ratio,size and volume content of coarse aggregate were simulated.Research results showed that concrete made of desert sand had size-effect and was rate-dependent.The peak stress of concrete made of desert sand declined with the minimum size of coarse aggregate.However,the peak stress of concrete made of desert sand increased first,and then declined with the volume content and maximum size of coarse aggregate.  相似文献   

16.
Extended horizontal cracks have been observed experimentally in a vertical column of saturated sand when a flow of water is forced to percolate upward through it. This paper provides a theory for this phenomenon. It will be shown that the presence of inhomogeneity in permeability along the length of the column is essential for such cracks to develop. It will also be shown that small initial inhomogeneity may be magnified through the transport of the finer component of the sand by percolation. Under certain conditions liquefaction takes place at a section of the sand column causing a crack to initiate and grow there. This theory is found to be in good qualitative agreement with the experimental findings. The project supported by the National Natural Science Foundation of China (19832010)  相似文献   

17.
This study analyzes the wetting front migration in layered unsaturated soils which have uncertain hydraulic properties. A Monte Carlo scheme was used to propagate the uncertainty of hydraulic parameters. RANUF, a computer program, was developed to solve the one-dimensional, pressure-based form of Richards' equation and to implement the Monte Carlo scheme.Uncertainty propagation was investigated for two-layered soils of various alternating fine over coarse or coarse over fine layer configurations and of various nonrandomized and/or randomized layer arrangements. The effects of changing initial and boundary conditions were also investigated. Randomness was introduced via the saturated hydraulic conductivity, K s, which was assumed to be distributed lognormally with a coefficient of variation of about 10 percent.It was found that in layered soils the mean profiles (i.e., water content and pressure head) remained essentially unchanged regardless of which layer (or layers) was (or were) randomized; however, the variance profiles were affected. Also, higher uniform initial water content tended to inhibit uncertainty, but higher supply rates did not show any characteristic trend for uncertainty behavior.  相似文献   

18.
An experimental study of the rise of small air bubbles (0.1 to 1.0 mm in diameter) in a quiescent pool is described. Local measurements of rise velocity were obtained as a function of height above the source nozzle using a laser-Doppler method. In addition, the bubble diameter was determined simultaneously from the same optical signals. Data are presented for various bubble diameters and spacings in bubble columns for both distilled water and a dilute polymer solution.It was found that for distilled water the rise velocity near the nozzle reaches the maximum observed in other studies before decelerating to its terminal velocity due to surfactant accumulation at its interface. The maximum rise velocity in dilute polymer was much lower for the same bubble diameter and reached its terminal velocity much faster. The results are shown to be in closer agreement with predictions for a solid sphere in this case.  相似文献   

19.
This paper describes an experimental investigation on the flow characteristics within a rotating cylinder containing a rolling bed of sand. The axis of the cylinder was horizontal and there was no axial bulk flow of particles. The velocity field of the gas flowing through the cylinder was measured by hot-wire anemometry. The measurements indicate that the velocity field is asymmetric with respect to a diameter perpendicular to the granular bed. CFD calculations confirm this finding. The gas velocity profiles are crucial in determining heat transfer from gas to solid.  相似文献   

20.
This paper presents an experimental study of particle transport in porous medium using a self-developed sand layer transportation–deposition testing system, aiming at delineating the detachment characteristics of deposited particles in porous medium. Two experimental modes, increase flow velocity and change flow direction, were adopted in this study. The tests were conducted using quartz powder as the particles and quartz sand as the porous media to study the response of detachment characteristics to changes in particle diameter (\(d_{s}\), with median diameter 18 and 41 \(\upmu \)m) and grain diameter (\(d_{p}\), with median diameter 0.36 and 1.25 mm). Breakthrough curves after the second peak were well described by a double exponential model with parameters of weight coefficient and detachment coefficient. This study shows that both modes can change the detach rate of deposited particles observably, and detach rate is affected by the value of flow velocity greatly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号