首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
本文提出了一组应力函数,用边界配置法计算了含外壁双边裂纹的扭转圆筒的扭转刚度和Ⅲ型应力强度因子.当内孔很小时,计算结果与含双边裂纹扭转圆轴的已知解一致.同时,本文给出了不同几何尺寸下圆筒扭转的计算结果.所用力法可以用于含外壁双边裂纹的不同形状简类结构的扭转问题.  相似文献   

3.
文献[1]提出通过一个映射变换来求解任意四边形截面柱体扭转问题,本文证明了这是不可能的,并且指出用类似的方法求解任意三角形截面柱体扭转问题也是不可能的.  相似文献   

4.
5.
本文采用考虑裂纹面上具有任意分布载荷的线弹簧模型,在Kirchhoff板弯曲理论的假设下,将含半椭圆型表面裂纹的平板问题化为一组耦合的积分方程组进行求解,对均匀拉伸和纯弯曲两种载荷作用下的应力强度因子数值解,同经典线弹簧模型和有限元解进行了比较,并给出了经典线弹簧模型不能得到的、裂纹面上承受幂次不均匀应力分布时应力强度因子的数值解.  相似文献   

6.
张端重  柳春图 《力学学报》1989,21(3):359-363
  相似文献   

7.
本文采用边界配置方法计算了受集中载荷作用时椭圆盘中偏心裂纹两端的应力强度因子,其中包括椭圆两半轴不同比值。不同裂纹长度和不同偏心程度的情况,在其特例椭圆盘中心裂纹情形,本文结果与Isida一致;在圆盘偏心裂纹情形,本文给出比Rooke等人更好的结果。  相似文献   

8.
三维裂纹体应力强度因子的计算   总被引:1,自引:0,他引:1  
本文采用塌缩三棱柱形奇异单元的位移计算应力强度因子,给出了一个新的全三维外推公式,它是Chen和Kuang公式〔13〕的全三维推广,特例证明,它的精度比In-graffea和Manu的公式〔8〕高一阶。数值计算表明,结果稳定和对单元尺寸改变不敏感  相似文献   

9.
本文从Reissner圆柱壳理论出发,应用摄动法获得了含轴向裂纹圆柱壳裂纹尖端应力应变场(包括Ⅰ、Ⅱ、Ⅲ型),并进一步应用Local-Global方法对不同尺寸块壳的应力强度因子进行了计算分析,同时对工程中常用的鼓胀系数进行了计算和分析讨论。计算结果表明,对于a/h较大的情况,经典公式是适用的,若a/h不太大时,经典理论将带来较大误差,本文给出了考虑剪切刚度影响的鼓胀系数的一些数值范围。  相似文献   

10.
含有裂纹和夹杂的复合柱体的扭转   总被引:3,自引:0,他引:3  
汤任基  乐金朝 《力学学报》1992,24(3):350-360
本文根据Saint-Venant扭转理论,提出了一种能用于扭转分析的线夹杂模型,并得到了它的基本解,进而将此解与的单层势函数解及单裂纹基本解结合,对同时带有裂纹和夹杂的复合柱体的扭转作了讨论,最后将问题归为解一组混合型积分方程,并建议了数值解法。文中通过问题的退化,证明本文提出的夹杂模型在数学和力学上都是正确的,最后作了若干数值例子的计算,其结果令人满意。  相似文献   

11.
构造了一种新的三维奇异单元,提出了一种有效计算三维裂纹应力强度因子新的数值方法。该方法的计算结果与理论解和Newman解结果一致;与Panson等方法相比所使用的自由度数大大减小。结果表明该方法是一种高效、稳定可靠的计算方法。  相似文献   

12.
The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transforms were used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Explicit expressions of both the dynamic stress intensity factor and the energy density factor were derived. And it is shown that, as crack driving force, they are equivalent for the present crack problem. Investigated are the effects of material nonhomogeneity and strip‘s highness on the dynamic fracture behavior.Numerical results reveal that the peak of the dynamic stress intensity factor can be suppressed by increasing the nonhomogeneity parameter of the shear modulus, and that the dynamic behavior varies little with the adjusting of the strip‘ s highness.  相似文献   

13.
The behavior of a crack under uniaxial tension in the presence of reinforcement is studied. The reinforcing members (riveted stiffeners) are modeled by point loads. Only four members nearest to the crack are taken into account. It is shown that stiffeners allow one to arrest a crack and prevent its catastrophic growth. Relations between the geometrical and force characteristics for which the crack is stabilized are obtained. The stabilization mechanism is discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 6, pp. 137–143, November–December, 2006.  相似文献   

14.
将三维热权函数法扩展为适用于表面力、体积力和温度载荷的通用权函数法(UWF).推导出以变分型积分方程表达的UWF法基本方程,从变分的角度,将求解三维热权函数法基本方程的多虚拟裂纹扩展法(MVCE)改造为可以适用于一般的变分型积分方程的一类新型数值方法--有限变分法(FVM).在FVM中可以引入无穷多种线性无关的局部变分模式,可以根据计算要求在求解域中插入任意多个计算节点,单一型裂纹问题FVM所得到的最终方程组的系数矩阵总是一个对称的窄带矩阵,而且对角元总是大数,具有良好的数值计算性能.FVM对于SIF沿裂纹前缘急剧变化的复杂情况具有较好的数值模拟能力和较高的计算精度,利用自身一致性,可以求得三维裂纹前缘SIF的高精度解.  相似文献   

15.
随着复合材料的应用和发展,不同材料组成的界面结构越来越受到人们的重视.界面层两侧材料的性能相异会引起材料界面端奇异性,同时界面和界面附近存在裂纹会引起裂尖处的应力奇异性.因此双材料界面附近的力学分析是比较复杂的.论文建立双材料直角界面模型,在材料界面附近预设初始裂纹,计算了有限材料尺寸对界面应力场及其附近裂纹应力强度因子的影响.运用弹性力学中的Goursat公式求得直角界面端在有限尺寸下的应力场以及其应力强度系数.通过叠加原理和格林函数法进一步得到在直角界面端附近的裂纹尖端应力强度因子.计算结果表明,在适当范围内改变材料内裂纹与界面之间的距离,界面附近裂纹尖端的应力强度因子随着裂纹与界面距离的增加而减少,并且逐渐趋于稳定.分析结果可以为预测双材料结构复合材料界面失效位置提供参考.  相似文献   

16.
This paper is a study into the interaction of two triaxial ellipsoidal cavities whose surfaces are under different pressures with an elliptic crack in an infinite elastic medium. The stress state in the elastic space is represented by a superposition of perturbed states due to the presence and interaction of the cavities and the crack. The exact solution of the problem is constructed by using a modified method of equivalent inclusion, the potential of an inhomogeneous ellipsoid, and a system of harmonic functions for the elliptic crack. A numerical analysis is carried out to find how the geometry of the cavities and the crack, the distance between them, and the pressure on their surfaces affect the stress intensity factors  相似文献   

17.
残余应力下厚壁筒表面裂纹的应力强度因子计算   总被引:1,自引:0,他引:1  
本文首先介绍了边界元法计算裂纹尖端应力强度因子的基本理论,接着利用边界元法计算了在残余应力下不同厚壁筒内表面椭圆裂纹的应力强度因子,研究了其大不随椭圆裂纹不同而变化的规律,为厚壁筒结构的设计,制造以及疲劳寿命分析提供了许多有价值的参考资料。  相似文献   

18.
The magnetoelastic stress-strain problem for a transversely isotropic ferromagnetic body with an elliptical crack in the isotropy plane is solved explicitly. The body is in an external magnetic field perpendicular to the isotropy plane. The magnetic field induces elastic strains and an internal magnetic field in the body. The main characteristics of stress-strain state and induced magnetic field are determined and their features in the neighborhood of the crack are analyzed. Formulas for the stress intensity factors of the mechanical and magnetic fields near the crack tip are presented__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 1, pp. 48–59, January 2005.  相似文献   

19.
The interaction of an elastic ellipsoidal inclusion with an elliptic crack in an infinite elastic medium under triaxial loading is analyzed. The stress state in the elastic space is represented as a superposition of the principal state and perturbed states, which are due to the presence and interaction of the inclusion and the crack. The analytical solution of the problem is found using the method of equivalent inclusion, the potential of an inhomogeneous ellipsoid, and a system of harmonic functions for an elliptic crack. The effect of triaxial loading on the stress intensity factors is analyzed  相似文献   

20.
本文在虚裂纹模型中引入初裂强度因子的概念以研究混凝土结构的三维裂缝扩展。虚裂纹的扩展由裂纹尖端的初裂强度因子和虚裂纹所传递的软化应力共同控制。将软化应力分析曲线分段线性化进行模拟,这使问题得到很大程度的简化,同时又保证了解的必要精度。对所建立的有限元基本方程组建议了一次性的求解方法,可以不进行迭代,这既保持了解的稳定,又减轻了计算工作量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号