首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and characterization of cofacial copper biscorroles and porphyrin-corroles linked by a biphenylenyl or anthracenyl spacer are described. The investigated compounds are represented as (BCA)Cu(2) and (BCB)Cu(2) in the case of the biscorrole (BC) derivatives and (PCA)Cu(2) and (PCB)Cu(2) in the case of porphyrin (P)-corrole (C) dyads, where A and B represent the anthracenyl and biphenylenyl bridges, respectively. A related monomeric corrole (Me(4)Ph(5)Cor)Cu and monomeric porphyrin (Me(2)Et(6)PhP)Cu that comprise the two halves of the porphyrin-corrole dyads were also studied. Electron spin resonance (ESR), (1)H NMR, and magnetic measurements data demonstrate that the copper corrole macrocycle, when linked to another copper corrole or copper(II) porphyrin, can be considered to be a Cu(III) complex in equilibrium with a Cu(II) radical species, copper(III) corrole being the main oxidation state of the corrole species at all temperatures. The cofacial orientation of (BCB)Cu(2), (BCA)Cu(2), and (PCB)Cu(2) was confirmed by X-ray crystallography. Structural data: (BCB)Cu(2)(C(110)H(82)N(8)Cu(2).3CDCl(3)), triclinic, space group P, a = 10.2550(2) A, b = 16.3890(3) A, c = 29.7910(8) A, alpha = 74.792(1) degrees , beta = 81.681(1) degrees , gamma = 72.504(2) degrees , Z = 2; (BCA)Cu(2)(C(112)H(84)N(8)Cu(2).C(7)H(8).1.5H(2)O), monoclinic, space group P 2(1)/c, a = 16.0870(4) A, b = 35.109(2) A, c = 19.1390(8) A, beta = 95.183(3) degrees , Z = 4; (PCB)Cu(2)(C(89)H(71)N(8)Cu(2).CHCl(3)), monoclinic, space group P2(1)/n, a = 16.7071(3) A, b = 10.6719(2) A, c = 40.8555(8) A, beta = 100.870(1) degrees , Z = 4. The two cofacial biscorroles, (BCA)Cu(2) and (BCB)Cu(2), both show three electrooxidations under the same solution conditions. The reduction of (BCA)Cu(2) involves a reversible electron addition to each macrocycle at the same potential of E(1/2) = -0.20 V although (BCB)Cu(2) is reversibly reduced in two steps to give first [(BCB)Cu(2)](-) and then [(BCB)Cu(2)](2)(-), each of which was characterized by ESR spectroscopy as containing a Cu(II) center. These latter electrode reactions occur at E(1/2) = -0.36 and -0.51 V versus a saturated calomel reference electrode. The half-reduced and fully reduced (BCB)Cu(2) show similar Cu(II) ESR spectra, and no evidence of a triplet signal is observed. The two well-separated reductions of (BCB)Cu(2) to give [(BCB)Cu(2)](2)(-) can be attributed to a stronger pi-pi interaction between the two macrocycles of this dimer as compared to those of (BCA)Cu(2). The copper porphyrin-corrole dyads, (PCA)Cu(2) and (PCB)Cu(2), show five reversible oxidations and two reversible reductions, and these potentials are compared with corresponding values for electrochemical reactions of the porphyrin and corrole monomers under the same solution conditions.  相似文献   

2.
The rotating ring disk electrode method has been used to study O2 electroreduction with metal corroles. Catalysis begins at potentials that are 0.5-0.7 V more positive than the expected potential of the M(III/II) couple based on studies in non-aqueous solutions. The path of O2 reduction depends on the nature of the metal ion. Cobalt corroles promote O2 reduction to H2O2. Iron corroles catalyse O2 reduction via parallel two- and four-electron pathways, with a predominate four-electron reaction. The rate constants for the individual O2 reduction paths are given at pH 7. Mechanisms are proposed on the basis of pH dependence, inhibition studies, and Tafel slopes. An imidazole-tailed iron corrole catalyses H2O2 disproportionation analogous to catalase.  相似文献   

3.
4.
Through electrostatic layer-by-layer (LBL) assembly, negatively charged citrate-stabilized platinum nanoparticles (PtNPs) and positively charged [tetrakis(N-methylpyridyl)porphyrinato] cobalt were alternately deposited on a 4-aminobenzoic acid-modified glassy carbon electrode and also on indium tin oxide substrates, directly forming the three-dimensional nanostructured materials. Thus-prepared multilayer films were characterized by UV--visible spectroscopy, surface plasmon resonance (SPR) spectroscopy, atomic force microscopy (AFM), and cyclic voltammetry. Regular growth of the multilayer films is monitored by UV--visible spectroscopy and SPR spectroscopy. AFM provides the morphology of the multilayer films. The PtNPs containing multilayer films exhibit high electrocatalytic activity for the reduction of dioxygen with high stability. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry demonstrate that the PtNP-containing multilayer films can catalyze an almost four-electron reduction of O(2) to H(2)O in an air-saturated 0.5 M H(2)SO(4) solution. Furthermore, the electrocatalytic activity of the films could be further tailored by simply choosing different cycles in the LBL process or more specifically the amount of the assembly components in the films. The high electrocatalytic activity and good stability for dioxygen reduction make the PtNP-containing multilayer films potential candidates for the efficient cathode material in fuel cells.  相似文献   

5.
6.
Ethynyl-bridged porphyrin-corrole dyads and triads were synthesized by using Pd(0) mediated coupling reactions and their structures were characterized by NMR, FT-IR, UV/Vis and fluorescence techniques. Besides spectroscopic techniques, computational studies at B3LYP/6-311G(d,p) level of DFT were also used to elucidate the minimum energy geometries and the molecular orbital characteristics of the new dyads and triads. DFT calculations pointed out the presence of charge separated donor-acceptor property between macrocycles of dyads and triads, and the emission studies indicated an excited state interaction between macrocycles, and energy transfer from the porphyrin to the corrole unit.  相似文献   

7.
A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (MPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium–tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet–visible–near-infrared spectroscopy (UV–vis–NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV–vis–NIR. SEM provides the morphology of the multilayer films. The PtNPs containing multilayer films exhibit high electrocatalytic activity for the reduction of dioxygen. Furthermore, the electrocatalytic activity of the films could be further tailored by simply choosing different cycles in the LBL process. This assembling method for polyelectrolyte functionalized carbon nanotubes and nanoparticles introduces new opportunities for the incorporation of various functionalities into nanotube devices, which, in turn, opens up the possibility of building more complex multicomponent nanostructures.  相似文献   

8.
A new approach to the synthesis of Rh(III) corrole complexes is developed and an unusual activation of C-C and C-N bonds is disclosed.  相似文献   

9.
The synthesis of a novel family of heterobinuclear cofacial biphenylene (B), anthracene (A), 9,9-dimethylxanthene (X), or dibenzofuran (O) bridged porphyrin-corrole complexes, (PCY)MClCoCl, is reported, M being either an iron(III) or manganese(III) ion. Each complex was characterized by electrochemistry, mass spectrometry, UV-vis, IR, and electron spin resonance spectroscopy. Unlike previously examined biscobalt porphyrin-corrole dyads, the cobalt ion of the corrole moiety is present in a high-valence +4 oxidation state, as proven by electrochemistry, spectroelectrochemistry, and an X-ray diffraction study of (PCB)FeClCoCl, which shows the presence of a bound Cl- anion on the cobalt corrole. Structural data: (PCB)FeClCoCl x 0.5(C7H16) x 0.5(CH2Cl2) x 2H2O, triclinic, space group P1, a = 13.8463(3) A, b = 16.8164(5) A, c = 17.9072(6) A, alpha = 93.780(1) degrees, beta = 111.143(1) degrees, gamma = 97.463(2) degrees, Z = 2.  相似文献   

10.
Co(III) corroles were investigated as efficient catalysts for the reduction of dioxygen in the presence of perchloric acid in both heterogeneous and homogeneous systems. The investigated compounds are (5,10,15-tris(pentafluorophenyl)corrole)cobalt (TPFCor)Co, (10-pentafluorophenyl-5,15-dimesitylcorrole)cobalt (F 5PhMes 2Cor)Co, and (5,10,15-trismesitylcorrole)cobalt (Mes 3Cor)Co, all of which contain bulky substituents at the three meso positions of the corrole macrocycle. Cyclic voltammetry and rotating ring-disk electrode voltammetry were used to examine the catalytic activity of the compounds when adsorbed on the surface of a graphite electrode in the presence of 1.0 M perchloric acid, and this data is compared to results for the homogeneous catalytic reduction of O 2 in benzonitrile containing 10 (-2) M HClO 4. The corroles were also investigated as to their redox properties in nonaqueous media. A reversible one-electron oxidation occurs at E 1/2 values between 0.42 and 0.89 V versus SCE depending upon the solvent and number of fluorine substituents on the compounds, and this is followed by a second reversible one-electron abstraction at E 1/2 = 0.86 to 1.18 V in CH 2Cl 2, THF, or PhCN. Two reductions of each corrole are also observed in the three solvents. A linear relationship is observed between E 1/2 for oxidation or reduction and the number of electron-withdrawing fluorine groups on the compounds, and the magnitude of the substituent effect is compared to what is observed in the case of tetraphenylporphyrins containing meso -substituted C 6F 5 substituents. The electrochemically generated forms of the corrole can exist with Co(I), Co(II), or Co(IV) central metal ions, and the site of the electron-transfer in each oxidation or reduction of the initial Co(III) complex was examined by UV-vis spectroelectrochemistry. ESR characterization was also used to characterize singly oxidized (F 5PhMes 2Cor)Co, which is unambiguously assigned as a Co(III) radical cation rather than the expected Co(IV) corrole with an unoxidized macrocyclic ring.  相似文献   

11.
A series of catecholatoiron(III) complexes, [Fe(III)L(4Cl-cat)]BPh4 (L = (4-MeO)2TPA (1), TPA (2), (4-Cl)2TPA (3), (4-NO2)TPA (4), (4-NO2)2TPA (5); TPA = tris(pyridin-2-ylmethyl)amine; 4Cl-cat = 4-chlorocatecholate), have been characterized by magnetic susceptibility measurements and EPR, 1H NMR, and UV-vis-NIR spectroscopies to clarify the correlation of the spin delocalization on the catecholate ligand with the O2 reactivity as well as the spin-state dependence of the O2 reactivity. EPR spectra in frozen CH3CN at 123 K clearly showed that introduction of electron-withdrawing groups effectively shifts the spin equilibrium from a high-spin to a low-spin state. The effective magnetic moments determined by the Evans method in a CH3CN solution showed that 5 contains 36% of low-spin species at 243 K, while 1-4 are predominantly in a high-spin state. Evaluation of spin delocalization on the 4Cl-cat ligand by paramagnetic 1H NMR shifts revealed that the semiquinonatoiron(II) character is more significant in the low-spin species than in the high-spin species. The logarithm of the reaction rate constant is linearly correlated with the energy gap between the catecholatoiron(III) and semiquinonatoiron(II) states for the high-spin complexes 1-3, although complexes 4 and 5 deviate negatively from linearity. The lower reactivity of the low-spin complex, despite its higher spin density on the catecholate ligand compared with the high-spin analogues, suggests the involvement of the iron(III) center, rather than the catecholate ligand, in the reaction with O2.  相似文献   

12.
In this paper, we report the electrochemical study of a family of mononuclear Fe(III) complexes [Fe(BMPA)Cl(3)] 1, [Fe(MPBMPA)Cl(3)] 2, [Fe(PBMPA)Cl(2)]3 and [Fe(PABMPA)Cl(2)](ClO(4)) 4, where the ligand BMPA is bis-(2-pyridylmethyl)amine, and MPBMPA, PBMPA and PABMPA are the N-methylpropanoate, N-propanoate and N-propanamide BMPA-derivatives, respectively. It was possible to verify the influence of the different ligands on the redox properties of the complexes and from this to classify the complexes according to their Lewis acidity through the Fe(III)/Fe(II) redox process, resulting in the following decreasing order in CH(3)CN solution: 4> 2> 1> 3. The effect of the solvents CH(3)CN and DMSO on their electrochemical properties was also determined. Furthermore, we investigated the reactivity of the electrochemically-generated Fe(II) complexes toward dioxygen and of the Fe(III) complexes toward superoxide through cyclic voltammetry. All the complexes reacted with dioxygen and superoxide in DMSO solution. Redox processes attributed to oxygenated species were observed in a more cathodic potential than those of the original compounds. According to the data, the new species Fe(II)-O(2) converts itself to Fe(III)-O(2)(-), which presents a new redox wave attributed to the process Fe(III)-O(2)(-) + e(-) --> Fe(II)-O(2)(-). The same species Fe(III)-O(2)(-) is formed from the reaction of the Fe(III) form of the complexes and KO(2).  相似文献   

13.
A delicate control of reaction conditions allows the isolation of several distinctively different iron complexes of tris(pentafluorophenyl)- and tris(2,6-dichlorophenyl)corrole. As long as coordinating ligands are present, the iron(III) complexes are stable in solution. Otherwise they are aerobically oxidized to either mononuclear chloroiron(IV) or dinuclear (mu-oxo)iron(IV) complexes, in acidic and basic solutions, respectively (the latter holds only for tris(pentafluorophenyl)corrole). When treated with NaNO(2), the mononuclear chloroiron(IV) corroles are efficiently converted into diamagnetic iron nitrosyl complexes. The low- and intermediate-spin iron(III), iron nitrosyl, and chloroiron(IV) corroles were fully characterized by a combination of spectroscopic methods and X-ray crystallography. There was no indication for an open-shell corrole in any of the complexes.  相似文献   

14.
A new series of relatively flexible cofacial donor-acceptor dyads for singlet-singlet energy transfer with the corrole or etio-porphyrin free base and zinc porphyrin as the acceptor and donor, respectively, were synthesized and characterized (represented as (PMes2COx)ZnH3 (13), (PMes2CO)ZnH3 (14), and (PMes2CX)ZnH3 (15)) where (PMes2COx = [2-[5-(5,15-dimesitylcorrol-10-yl)-diphenylether-2'-yl]-13,17-diethyl-2,3,7,8,12,18-hexamethylporphyrin]), (PMes2CO = [5-[5-(5,15-dimesitylcorrol-10-yl)-dibenzofuran-4-yl]-13,17-diethyl-2,3,7,8,12,18-hexamethylporphyrin]), and (PMes2CX = [5-[5-(5,15-dimesitylcorrol-10-yl)-9,9-dimethylxanthen-4-yl)]-13,17-diethyl-2,3,7,8,12,18-hexamethylporphyrin]), respectively) along with the homobismacrocycles (DPOx)ZnH2 (17) and (DPOx)Zn2 (18) (where (DPOx = 2,2'-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]diphenylether) as comparison standards. The rate for energy transfer (kET) extracted by the measurements of fluorescence lifetimes are of the same order of magnitude as those recently reported for the rigidly held face-to-face dyads ((DPB)ZnH2 (1), (DPX)ZnH2 (2), (DPA)ZnH2 (3), (DPO)ZnH2 (4), and (DPS)ZnH2 (5) where (DPB = 1,8-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]biphenylene), (DPX = 4,5-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]-9,9-dimethylxanthene), (DPA = 1,8-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]anthracene), (DPO = 4,6-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]dibenzofuran), and (DPS = 4,6-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]dibenzothiophene), respectively), but for the first time, it is shown that the presence of a bulky group located between the acceptor and the donor moiety influences the transfer rate. The presence of perpendicular mesityl groups on the acceptor macrocycle prevents the two macrorings from interacting strongly; therefore, kET is slower. On the other hand, by rendering the rigid spacer flexible (i.e., changing the dibenzofuran rigid spacer to the flexible diphenylether assembling fragment), kET increases due to stronger intermacrocycle interactions. This study is complemented by DFT computations (B3LYP/3-21G*) as a molecular modeling tool where subtle structural features explain the changes in kET. During the course of this study, X-ray structures of 17 and 18 were investigated and exhibit a linear stacking of the bismacrocycles where intermolecular porphyrin-porphyrin interactions are observed (dinter(Zn...Zn) = 4.66 and 4.57 A, for 17 and 18, respectively).  相似文献   

15.
Cobaltites, ferrites and chromites of some metals were found to be catalytically active in oxidation of water to dioxygen by trisbipyridyl complexes of Fe(III) and Ru(III). The possible catalytic action of surface compounds of hydroxide type is discussed.
, , - (III) (III). .
  相似文献   

16.
Inspired from nature, transition metal porphyrins and corroles have been designed and synthesized for electrocatalytic oxygen reduction reaction (ORR). However, the efficiency is limited by their low conductivity and thus carbonization is usually required. Herein, we report a new strategy by covalently linking cobalt(III) corrole and cobalt(II) porphyrin onto a semiconducting fluoro-graphdiyne (F-GDY) film through nucleophilic substitution reaction. The crystalline F-GDY film was prepared by Glaser-Hay coupling at the water/dichloromethane interface, followed by ultrasonic-assisted exfoliation in liquid. The Co(III) corrole-tethered F-GDY material exhibited excellent four-electron ORR activity, with a half-wave potential of 0.875 V (vs reversible hydrogen electrode). It also displayed high discharge performance and capacity in a zinc-air battery device, superior to the commercial Pt/C. Our study provides a pyrolysis-free approach toward biomimetic catalysts for efficient small molecule activation.  相似文献   

17.
The complexes [Ru((t)Bu(2)bipy)(bpym)X(2)] (X = Cl, NCS) and [M((t)Bu(2)bipy)(2)(bpym)][PF(6)](2) (M = Ru, Os) all have a low-energy LUMO arising from the presence of a 2,2'-bipyrimidine ligand, and consequently have lower-energy (1)MLCT and (3)MLCT states than analogous complexes of bipyridine. The vacant site of the bpym ligand provides a site at which [Ln(diketonate)(3)] units can bind to afford bipyrimidine-bridged dinuclear Ru-Ln and Os-Ln dyads; four such complexes have been structurally characterised. UV/Vis and luminescence spectroscopic studies show that binding of the Ln(III) fragment at the second site of the bpym ligand reduces the (3)MLCT energy of the Ru or Os fragment still further. The result is that in the dyads [Ru((t)Bu(2)bipy)X(2)(mu-bpym)Ln(diketonate)(3)] (X = Cl, NCS) and [Os((t)Bu(2)bipy)(2)(mu-bpym)Ln(diketonate)(3)][PF(6)](2) the (3)MLCT is too low to sensitise the luminescent f-f states of Nd(III) and Yb(III), but in [Ru((t)Bu(2)bipy)(2)(mu-bpym)Ln(diketonate)(3)][PF(6)](2) the (3)MLCT energy of 13,500 cm(-1) permits energy transfer to Yb(III) and Nd(III) resulting in sensitised near-infrared luminescence on the microsecond timescale.  相似文献   

18.
A new family of copper(I) complexes with "glycoligands" containing a central saccharide scaffold, with 2-picolyl ether groups or 2-picolylamine or N-imidazolylamine groups, has been prepared and characterized. For this purpose, the following tetradentate ligands have been synthesized: methyl 2,3-di-O-(2-picolyl)-alpha-D-lyxofuranoside (L1), 1,5-anhydro-2-deoxy-3,4-di-O-(2-picolyl)-d-galactitol (L2), 5-(amino-N-(2-salicyl))-5-deoxy-1,2-O-isopropylidene-3-O-(2-picolyl)-alpha-D-xylofuranose (L3), and 5-(amino-N-(2-salicyl))-5-deoxy-1,2-O-isopropylidene-3-O-(methylimidazol-2-yl)-alpha-D-xylofuranose (L4). The ligands and the complexes were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopies, ESI mass spectrometry, and cyclic voltammetry. Collaterally with the experimental work, HF-DFT(B3LYP/6-31G*) computations were performed to obtain additional structural information. The Cu(I) complexes are found to be pentacoordinated. The redox properties and the O2-reactivity of the Cu(I)Ln complexes have been studied. Reactions of Cu(I) complexes with dioxygen in ethanol yield stable Cu(II) complexes as confirmed by UV-visible spectrophotometry and EPR spectroscopy.  相似文献   

19.
Unfolding turns immobilized cytochrome c into a His-His ligated form endowed with catalytic activity towards O(2), which is absent in the native protein. Dioxygen could be used by naturally occurring unfolded cytochrome c as a substrate for the production of partially reduced oxygen species (PROS) contributing to the cell oxidative stress.  相似文献   

20.
Comparison of tetrabenzoporphyrin complexation reactions and transmetalation of cadmium(II) tetrabenzoporphyrinate with cobalt(II) acetate and chloride in dimethylformamide (DMF) has been carried out Cobalt(III) tetrabenzoporphyrinate has been prepared and identified. Acido ligands displacement in Co(III) tetrabenzoporphyrinate by pyridine, imidazole, and quinuclidine molecules has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号