首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Reaction of [Cp*TaCl4] (Cp*=eta5-C5Me5) with a sixfold excess of LiBH(4)thf followed by BH3thf in toluene at 100 degrees C led to the isolation of hydrogen-rich metallaboranes [(Cp*Ta)2B4H10] (1), [(Cp*Ta)2B5H11] (2), [(Cp*Ta)2B5H10(C6H4CH3)] (3), and [(Cp*TaCl)2B5H11] (4) in modest yield. Compounds 1-3 are air- and moisture-sensitive but 4 is reasonably stable in air. Their structures are predicted by the electron-counting rules to be a bicapped tetrahedron (1), bicapped trigonal bipyramids (2, 3), and a nido structure based on a closo dodecahedron 4. Yellow tantalaborane 1 has a nido geometry with C2v symmetry and is isostructural with [(Cp*M)2B4H8] (M=Cr and Re); whereas 2 and 3 are C3v-symmetric and isostructural with [(Cp*M)2B5H9] (M=Cr, Mo, W) and [(Cp*ReH)2B5Cl5]. The most remarkable feature of 4 is the presence of a hydride ligand bridging the ditantalum center to form a symmetrical tantalaborane cluster with a long Ta--Ta bond (3.22 A). Cluster 4 is a rare example of electronically unsaturated metallaborane containing four TaHB bonds. All these new metallaboranes have been characterized by mass spectrometry, 1H, 11B, and 13C NMR spectroscopy, and elemental analysis, and the structural types were unequivocally established by crystallographic analysis of 1-4.  相似文献   

5.
The reaction of nido‐[1,2‐(Cp*RuH)2B3H7] ( 1 a , Cp*=η5‐C5Me5) with [Mo(CO)3(CH3CN)3] under mild conditions yields the new metallaborane arachno‐[(Cp*RuCO)2B2H6] ( 2 ). Compound 2 catalyzes the cyclotrimerization of a variety of internal‐ and terminal alkynes to yield mixtures of 1,3,5‐ and 1,2,4‐substituted benzenes. The reactivities of nido‐ 1 a and arachno‐ 2 with alkynes demonstrates that a change in geometry from nido to arachno drives a change in the reaction from alkyne‐insertion to catalytic cyclotrimerization, respectively. Density functional calculations have been used to evaluate the reaction pathways of the cyclotrimerization of alkynes catalyzed by compound 2 . The reaction involves the formation of a ruthenacyclic intermediate and the subsequent alkyne‐insertion step is initiated by a [2+2] cycloaddition between this intermediate and an alkyne. The experimental and quantum‐chemical results also show that the stability of the metallacyclic intermediate is strongly dependent on the nature of the substituents that are present on the alkyne.  相似文献   

6.
The new compounds CpV(B(3)H(8))(2), CpCr(B(3)H(8))(2), and Cp(2)Co(2)(B(6)H(14)) have been synthesized by treating the pentamethylcyclopentadienyl complexes [CpVCl(2)](3), [CpCrCl(2)](2), and [CpCoCl](2) with NaB(3)H(8). X-ray crystallography shows that CpV(B(3)H(8))(2) and CpCr(B(3)H(8))(2) have the same ligand sets but different molecular structures: the vanadium compound contains two bidentate B(3)H(8) ligands (i.e., bound to the metal center via two vicinal hydrogen atoms), whereas the chromium compound has one bidentate B(3)H(8) ligand and one B(3)H(8) ligand bound in an unprecedented fashion via two geminal hydrogen atoms. The "gem-bound" B(3)H(8) group itself has an atypical structure consisting of a BH(2)-BH(2)-BH(3) triangle with one additional hydrogen atom bridging the unique BH(2)-BH(2) edge. The B-B distances are nearly identical within experimental error at 1.790(5), 1.792(5), and 1.786(6) Angstrom. The relationship between the electronic and molecular structures of the V and Cr compounds is briefly discussed. The structure of Cp(2)Co(2)(B(6)H(14)) can be viewed in two different ways: as a dicobalt complex in which two CpCo units are each bound to four adjacent boron atoms of an S-shaped B(6)H(14) ligand, or as an eight-vertex hypho cluster compound. In the former case, the B(6)H(14) ligand is best regarded as a dianionic bi-borallyl group H(3)B(mu-H)BH(mu-H)BHBH(mu-H)BH(mu-H)BH(3) in which one hydrogen at each end of the chain is involved in an agostic interaction. From a cluster point of view, the structure of Cp(2)Co(2)(B(6)H(14)) can be generated by removing three adjacent high-connectivity vertices from the eleven-vertex closo polyhedron. The Co-B distances vary from 2.008(5) to 2.183(4) Angstrom, and the B-B distances within in the S-shaped chain range from 1.734(8) to 1.889(6) Angstrom. Finally, a new synthesis of the known molybdenum compound Cp(2)Mo(2)(B(5)H(9)) is described; its structure as established by X-ray crystallography closely resembles that of the previously described (C(5)H(4)Me) analogue.  相似文献   

7.
8.
The reaction of [(Cp*Ta)(2)B(4)H(9)(μ-BH(4))] (1; Cp* = η(5)-C(5)Me(5)) with [Fe(2)(CO)(9)] in hexane yielded [(Cp*Ta)(2)B(5)H(7){Fe(CO)(3)}(2)] (2) and [(Cp*Ta)(2)B(5)H(9){Fe(CO)(3)}(4)] (3) in moderate yield. Cluster 2 represents the first example of a bicapped pentagonal-bipyramidal metallaborane with a deformed equatorial plane, and 3 can be described as a fused cluster in which two pentagonal-bipyramidal units are fused through a common 3-vertex triangular face. Compounds 2 and 3 have been characterized by mass spectrometry and IR, (1)H, (11)B, and (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis.  相似文献   

9.
Structurally characterised 17-vertex [(PMe2Ph)2PtB16H17Me] 3 is obtained, albeit in low yield, by platination of 16-vertex B16H20 1 using [PtMe2(PMe2Ph)2] under mild conditions. Platination has occurred on the {B10} subcluster of 1, interesting in that B16H20 itself deprotonates on the {B8} subcluster: the reference 16-vertex [B16H19]- anion 1a, prepared by deprotonation of 1 with 1,8-bis(dimethylamino)naphthalene, is also structurally characterised. [PtMe2(PMe2Ph)2] with 14-vertex B14H18 2 similarly gives a low yield of 15-vertex [(PMe2Ph)2PtB14H16] 5, of formulation and structure substantiated by DFT calculations.  相似文献   

10.
Reactions of Halfsandwich Rhenium(V) Oligochalcogenide Complexes with Dimethyl Acetylene Dicarboxylate. Molecular Structures of the New 1,2-Dicarbomethoxy-ethene-1,2-dichalcogenate Chelate Compounds Cp*Re[S2C2(COOMe)2]2 and Cp*Re(NtBu)[Se2C2(COOMe)2] The reaction of Cp*Re(S3)(S4) ( 1a ) with dimethyl acetylene dicarboxylate (dmad) leads through the blue intermediate Cp*Re(S4)[S2C2(COOMe)2] ( 2a ) to the red bis(ethene-1,2-dithiolato) complex Cp*Re[S2C2(COOMe)2]2 ( 3a ). The product 3a is also formed in the reactions of dmad with the tetrasulfidorhenium complexes Cp*Re(L)(S4) (L = O ( 4a ), NtBu ( 5a )) while the analogous tetraselenidorhenium compounds Cp*Re(L)(Se4) ( 4b and 5b ) are only transformed to Cp*Re(L)[Se2C2(COOMe)2] (L = O ( 6b ), NtBu ( 7b )). According to the X-ray crystal structure analyses, the (ethene-1,2-dithiolato)rhenium chelate rings in 3a are folded along the S …? S vector towards the Cp* ligand (angle between the planes ReS2/S2C2 159.2°), whereas the ReSe2C2 chelate ring in 7b is planar.  相似文献   

11.
The reaction of less than one equivalent of [Rh2Cl2(nbd)2] with [Ru4H(CO)12BH], which contains a semi-interstitial boron atom, yields the heterometallic boride clustercis-[Rh2Ru4H(CO)12(nbd)2B] which has been characterized by spectroscopic and X-ray diffraction methods. The cluster has an octahedral core, consistent with an 86 electron count. Deprotonation yields the conjugate basecis-[Rh2Ru4(CO)12(nbd)2B] which has been isolated and fully characterized as the [(Ph3P)2N]+ salt. There is little structural perturbation upon going fromcis-[Rh2Ru4H(CO)12(nbd)2B] tocis-[Rh2Ru4(CO)12(nbd)2B] and neither cluster shows a tendency for the formation of thetrans skeletal isomer in contrast to the analogous carbonyl clustercis-[Rh2Ru4(CO)16B]. If the reaction of [Rh2Cl2(nbd)2] with [Ru4H(CO)12BH] is allowed to proceed for 30 min and [R 3PAuCl] (R=Ph, C6H11, 2-MeC6H4) is then added, the clusterscis-[Rh2Ru4(CO)12(nbd)2B(AuPR3)] andcis-[Rh2Ru4(CO)14(nbd)B(AuPR3)] are formed in yields that are dependent upon the initial reaction period. The single crystal structures ofcis-[Rh2Ru4(CO)12(nbd)2B(AuPPh3)] andcis-[Rh2Ru4(CO)14(nbd)B(AuPPh3)] are reported. In contrast to their all-carbonyl analoguescis-[Rh2Ru4(CO)16B(AuPR 3)] (R=Ph or C6H11), the nbd derivatives do not undergocistrans skeletal isomerism.  相似文献   

12.
Interaction of the lacunary [alpha-XW9O33](9-) (X = As(III), Sb(III)) with Cu(2+) and Zn(2+) ions in neutral, aqueous medium leads to the formation of dimeric polyoxoanions, [(alpha-XW9O33)2M3(H2O)3](12-) (M = Cu(2+), Zn(2+); X = As(III), Sb(III)), in high yield. The selenium and tellurium analogues of the copper-containing heteropolyanions are also reported: [(alpha-XW9O33)2Cu3(H2O)3](10-) (X = Se(IV), Te(IV)). The polyanions consist of two [alpha-XW9O33] units joined by three equivalent Cu(2+) (X = As, Sb, Se, Te) or Zn(2+) (X = As, Sb) ions. All copper and zinc ions have one terminal water molecule resulting in square-pyramidal coordination geometry. Therefore, the title anions have idealized D3h symmetry. The space between the three transition metal ions is occupied by three sodium ions (M = Cu(2+), Zn(2+); X = As(III), Sb(III)) or potassium ions (M = Cu(2+); X = Se(IV), Te(IV)) leading to a central belt of six metal atoms alternating in position. Reaction of [alpha-AsW9O33](9-) with Zn(2+), Co(2+), and Mn(2+) ions in acidic medium (pH = 4-5) results in the same structural type but with a lower degree of transition-metal substitution, [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Co(2+), Mn(2+)). All nine compounds are characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The solution properties of [(alpha-XW9O33)2Zn3(H2O)3](12-) (X = As(III), Sb(III)) were also studied by 183W-NMR spectroscopy.  相似文献   

13.
The reaction of equimolar amounts of M(η5-C5H4PPh2)2 (M = Fe, Ru, or Os) and [Ru(H2O)6](OTs)2 afforded the M(η5-C5H4PPh2)2Ru(H2O)2(OTs)2 complexes, which were characterized by elemental analysis and 1H, 13C, and 31P NMR spectroscopy. The structure of the osmocene complex was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 659—661, April, 2006.  相似文献   

14.
15.
Room temperature photolysis of a triply‐bridged borylene complex, [(μ3‐BH)(Cp*RuCO)2(μ‐CO)Fe(CO)3] ( 1 a ; Cp*=C5Me5), in the presence of a series of alkynes, 1,2‐diphenylethyne, 1‐phenyl‐1‐propyne, and 2‐butyne led to the isolation of unprecedented vinyl‐borylene complexes (Z)‐[(Cp*RuCO)2(μ‐CO)B(CR)(CHR′)] ( 2 : R, R′=Ph; 3 : R=Me, R′=Ph; 4 : R, R′=Me). This reaction permits a hydroboration of alkyne through an anti ‐ Markovnikov addition. In stark contrast, in the presence of phenylacetylene, a metallacarborane, closo‐[1,2‐(Cp*Ru)2(μ‐CO)2{Fe2(CO)5}‐4‐Ph‐4,5‐C2BH2] ( 5 a) , is formed. A plausible mechanism has been proposed for the formation of vinyl‐borylene complexes, which is supported by density functional theory (DFT) methods. Furthermore, the calculated 11B NMR chemical shifts accurately reflect the experimentally measured shifts. All the new compounds have been characterized in solution by mass spectrometry and IR, 1H, 11B, and 13C NMR spectroscopies and the structural types were unequivocally established by crystallographic analysis of 2 , 5 a , and 5 b .  相似文献   

16.
17.
The reaction of the (borole)rhodium iodide complex [(η-C4H4BPh)RhI]4 with Cp*Li afforded the sandwich compound Cp*Rh(η-C4H4BPh) (4). The reactions of compound 4 with the solvated complexes [Cp*M(MeNO2)3]2+(BF 4 )2 gave triple-decker cationic complexes with the central borole ligand [Cp*Rh(η-η55-C4H4BPh)MCp*]2+(BF 4 )2 (M = Rh (5) or Ir (7)). The structure of complex 4 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1525–1527, September, 2006.  相似文献   

18.
In an attempt to find generic routes to multiple inter-cluster sigma-linking, mild thermolysis of [6,9-(SMe2)2-arachno-B10H12] 1 in inert hydrocarbon solution gives the tridecaboranyl species [6,9-(SMe2)2-arachno-B10H(10)-1,5-(6'-nido-B10H13)2] 3 (23%).  相似文献   

19.
According to the protonation of [PPh4]2[Ru6C(CO)16] (1b) withp-toluene-sulfonic acid, a hydrido ruthenium cluster [PPh4][Ru6C(CO)16H] (3b) was obtained in 53% yield, which readily decomposed in protic solvents even at –20°C to yield1b, Ru6C(CO)16H2, and Ru5C(CO)15. Cluster3b was characterized by single-crystal X-ray analysis. The six metal atoms are arranged in the form of an octahedron with the carbido ligand located in the center. There are 13 terminal carbonyl, three bridging carbonyl, and a bridging hydrido ligands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号