首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
在pH=5.0—9.0的水溶液中, 硫化镉纳米微粒[(CdS)n]与蒽环类抗生素米托蒽醌(MXT)、 表柔比星(EPI)和柔红霉素(DNR)凭借静电引力及疏水作用力结合, 形成粒径更大的聚集体, 导致共振瑞利散射(RRS)的增强并产生新的RRS光谱, 最大的RRS峰位于292 nm(MXT体系)、 285 nm(DNR体系)和315 nm(EPI体系). 与此同时还观察到二级散射(SOS)和倍频散射(FDS)强度明显提高. 其最大SOS峰位于540 nm(MXT体系)和560 nm(EPI及DNR体系), 而最大的FDS峰分别位于335 nm(MXT体系)、 320 nm(EPI体系)和330 nm(DNR体系). 在一定条件下, 3种散射强度(ΔI)均与药物的浓度成正比, 反应具有高灵敏度, 对于3种药物的检出限在3.6—9.1 ng/mL之间. 其中(CdS)n-MXT体系灵敏度最高, 对MXT的检出限分别为4.1 ng/mL(RRS)、 3.8 ng/mL(SOS)和3.6 ng/mL(FDS). 据此发展了一种用纳米硫化镉作探针, 灵敏、 简便并快速测定蒽环类抗癌药物的共振瑞利散射新方法.  相似文献   

2.
在近中性至弱碱性介质中, 金纳米微粒与表柔比星(EPI)、柔红霉素(DNR)和米托蒽醌(MXT)等蒽环类抗癌药物借静电引力、疏水作用力结合, 形成粒径更大的聚集体, 导致共振瑞利散射(RRS)的显著增强并产生新的RRS光谱, 三种结合产物的最大RRS峰均位于313 nm附近, 并在510~610 nm之间有一宽的散射带. 其散射强度(ΔI)与3种抗癌药物的浓度成正比, 对EPI, DNR和MXT的线性范围分别为0.009~0.50, 0.010~0.70 和0.030~1.20 μg•mL-1, 它们的检出限(3σ)分别为2.7, 3.1和9.0 ng•mL-1. 研究了反应产物的吸收、荧光和RRS光谱特征, 适宜的反应条件及分析化学性质, 发展了一种用RRS技术灵敏、简便、快速测定蒽环类抗癌药物的新方法.  相似文献   

3.
罗家刚  刘忠芳  刘绍璞  胡小莉 《化学学报》2008,66(23):2604-2612
在0.0035~0.0045 mol/L硫酸介质中, 牛血清白蛋白(BSA)、人血清白蛋白(HSA)、卵白蛋白(OVA)和血红蛋白(HGB)等蛋白质以带正电荷的阳离子存在. 它们能借助于静电引力和疏水作用力与配阴离子[HgI4]2--反应形成结合产物, 此时将引起共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)显著增强, 并且出现新的散射光谱. 其最大RRS, SOS和FDS波长分别位于390, 760和390 nm附近. 在一定范围内, 三种散射增强(ΔIRRS, ΔISOS和ΔIFDS)与蛋白质浓度成正比, 方法具有高灵敏度, 三种方法对于不同蛋白质的检出限分别在5.7~15.9 ng/mL (RRS), 8.2~15.4 ng/mL (SOS)和11.2~22.1 ng/mL (FDS)之间, 均可用于痕量蛋白质的测定. 本文研究了[HgI4]2-与蛋白质相互作用对RRS, SOS和FDS光谱特征和强度的影响, 考察了适宜的反应条件, 并以RRS为例考察了共存物质的影响, 表明方法有良好的选择性. 据此, 利用[HgI4]2-与蛋白质的相互作用发展了一种用共振光散射技术、灵敏度高、简便、快速测定蛋白质的新方法. 本方法可用于血清和人尿中总蛋白质的测定.  相似文献   

4.
在pH3.0~5.0的HAc-NaAc缓冲溶液中,盐酸氯丙嗪与十二烷基苯磺酸钠、十二烷基磺酸钠和十二烷基硫酸钠等阴离子表面活性剂反应形成离子缔合物时,仅能引起吸收光谱和荧光光谱的微小变化,但却能导致二级散射(SOS)和倍频散射(FDS)的显著增强。最大SOS峰均在552nm附近,最大FDS峰均在390nm附近。其中SOS法灵敏度更高,它对十二烷基苯磺酸钠、十二烷基硫酸钠和十二烷基磺酸钠的检出限分别为0.047、0.106和0.117mg/L,而其线性范围分别为0.2~12、0.4~15和0.4~20.0mg/L。研究了反应产物的吸收、荧光、SOS和FDS光谱特征、适宜的反应条件及分析化学性质,据此发展了一种用SOS技术灵敏、简便、快速测定阴离子表面活性剂的环境友好型新方法。  相似文献   

5.
在0.05 mol/L(pH 1.3)的 HCl 介质中,十二烷基苯磺酸钠(SDBS)与亚甲蓝(MB)借静电引力和疏水作用力形成 2︰1 的离子缔合物,导致溶液共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)急剧增强,并产生新的 RRS,SOS 和 FDS 光谱。最大 RRS, SOS 和 FDS 分别位于 310, 647 和 341 nm, 散射强度在一定范围内与MB的浓度成正比,方法具有很高的灵敏度,对于MB的检出限(3?)分别为 1.2 ng/mL (RRS法)、1.4 ng/mL (SOS法) 和 1.7 ng/mL (FDS法)。据此发展了一种测定痕量亚甲蓝的新方法。用于人血清样品中亚甲蓝含量的检测,回收率在 94.4-103.7 ? 之间。实验优化了反应条件,考察了共存物质的影响,并结合量子化学AM1法讨论了反应机理和散射光谱产生及增强的原因。  相似文献   

6.
崔志平  刘绍璞  刘忠芳  胡小莉 《应用化学》2011,28(11):1331-1336
在pH=10.0的Britton-Robinson(BR)缓冲溶液中,多菌灵与Pd(Ⅱ)反应形成1∶1的六元螯合物,导致共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)显著增强,并产生新的共振瑞利散射光谱,其最大RRS、SOS和FDS波长分别位于309、606和310 nm。 在一定范围内,3种散射增强(ΔIRRS、ΔISOS和ΔIFDS)均与多菌灵的浓度成正比,反应具有较高的灵敏度,对于多菌灵的检出限分别为7.1×10-9 g/mL(RRS)、7.4×10-9 g/mL(SOS)和10.7×10-9 g/mL(FDS)。 据此提出了测定多菌灵的光散射新方法。 以灵敏度最高的RRS法为例,测定了西芹和市售农药中多菌灵的含量,结果与标准方法一致。 文中还对反应机理和散射增强的原因进行了讨论。  相似文献   

7.
在pH4.5~7.0的Britton-Robinson(BR)缓冲溶液中,呋塞米(FUR)与Pd(Ⅱ)形成1:1的螯合阴离子,它能进一步与乙基紫(EV)、结晶紫(CV)、甲基绿(MeG)、亮绿(BG)、甲基紫(MV)等碱性三苯甲烷染料(BTPMD)阳离子通过静电引力和疏水作用形成FUR:Pd(II):BTPMD为1:1:1的离子缔合物.此时,该离子缔合反应不仅能引起吸收光谱的变化,而且更能导致共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)的显著增强,其最大RRS波长分别位于324nm(EV,CV和MV体系)和340nm(BG和MeG体系),最大SOS波长分别位于550nm(EV,CV,BG和MeG体系)和530nm(MV体系),而最大FDS波长均位于392nm附近.在一定条件下三种散射增强(ΔIRRS,ΔISOS和ΔIFDS)均与呋塞米(FUR)的浓度成正比.对不同染料体系,三种方法对FUR的检出限分别在0.3~4.9ng/mL(RRS),3.2~33.1ng/mL(SOS)和9.0~85.7ng/mL(FDS)之间,均可用于痕量FUR的测定.本文研究了三元离子缔合物的形成对吸收,RRS,SOS和FDS光谱特征和强度的影响,考察了适宜的反应条件、影响因素和分析化学性质,并以RRS法为例考察了共存物质的影响.据此提出了一种高灵敏度、简便、快速测定FUR的共振光散射新方法,将其用于片剂、注射液、人血清和尿样中FUR的测定,结果满意.文中还对三元离子缔合物的组成、结构和反应机理进行了讨论.  相似文献   

8.
在0.05 mol/L(pH=1.3)的HCl介质中,十二烷基苯磺酸钠(SDBS)与亚甲蓝(MB)通过静电引力和疏水作用力形成 2: 1的离子缔合物,导致溶液共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)急剧增强,光谱最大散射强度分别位于310、648和341 nm,并在一定范围内与MB的浓度成正比,对于MB的检出限(3σ)分别为1.2×10-9 g/mL(RRS法)、1.4×10-9 g/mL(SOS法)和1.7×10-9 g/mL(FDS法).据此建立了光散射法测定痕量亚甲蓝的新方法.用于人血清样品中亚甲蓝含量的检测,回收率在94.4%~103.7%之间.实验优化了反应条件,考察了共存物质的影响,讨论了反应机理和散射光谱产生及增强的原因.  相似文献   

9.
在pH=3.5的HAc-NaAc介质中,呋塞米(FUR)与Ag(Ⅰ)形成1:1(摩尔比)的螯合物,从而引起共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)光谱显著增强,其最大RRS,SOS和FDS波长分别位于310,584和330 nm.在一定范围内,3种散射信号的增强(△ⅠRRs,△ⅠSOS和△ⅠFDS...  相似文献   

10.
在pH6.0的HAc-NaAc缓冲液中,茜素红-镧与左氧氟沙星(LVFX)形成三元配合物,导致共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)均增强,光谱最大散射波长分别位于314 nm、570 nm和285 nm,对于RRS在0.02~1.2 mg/L、SOS在0.01~1.0 mg/L和FDS在0.01~1.0 mg/L范围内呈良好的线性关系,LVFX的检出限分别为4.00μg/L(RRS法)、9.16μg/L(SOS法)和4.42μg/L(FDS法),据此建立了灵敏的测定左氧氟沙星的共振线性和非线性光散射分析法。并以RRS法考察了茜素红-镧-左氧氟沙星体系的反应条件、影响因素等。方法可用于片剂、胶囊中左氧氟沙星的测定,同时以标准加入法对尿样和血样进行了分析。  相似文献   

11.
用钼酸盐高灵敏共振瑞利散射法测定米托蒽醌   总被引:6,自引:2,他引:6  
在盐酸和硝酸介质中用共振瑞利散射法测定了血清和尿液中的米托蒽醌, 结果表明, 该方法的灵敏度高, 对米托蒽醌的检出限为6 ng/mL(硝酸介质)和8 ng/mL(盐酸介质), 可用于血清和尿样中米托蒽醌的测定.  相似文献   

12.
The interaction between erythrosine (ET) and tetracaine hydrochloride (TA) was studied by resonance Rayleigh scattering (RRS), frequency doubling scattering (FDS) and second-order scattering (SOS) combining with absorption spectrum. In a weak acidic medium of Britton-Robinson (BR) buffer solution of pH 4.5, erythrosine reacted with tetracaine hydrochloride to form 1:1 ion-association complex. As a result, the new spectra of RRS, SOS and FDS appeared and their intensities enhanced greatly. The maximum peaks of RRS, SOS and FDS were at 342 nm, 680 nm and 380 nm, respectively. The intensities of the three scattering were directly proportional to the concentration of TA in the range of 0.008-4.2 microg mL(-1) for RRS, 0.027-4.2 microg mL(-1) for SOS and 0.041-4.2 microg mL(-1) for FDS. The methods had very high sensitivities and good selectivities, and the detection limits were 0.003 microg mL(-1) for RRS, 0.008 microg mL(-1) for SOS and 0.012 microg mL(-1) for FDS, respectively. Therefore, a new method was developed to determinate trace amounts of TA. The recovery for the determination of TA in blood serum and urine samples was between 97.0% and 103.8%. In this study, mean polarizability was calculated by AM1 quantum chemistry method. In addition, the reasons for the enhancement of scattering spectra and the energy transfer between absorption, fluorescence and RRS were discussed.  相似文献   

13.
Liu S  Wang F  Liu Z  Hu X  Yi A  Duan H 《Analytica chimica acta》2007,601(1):101-107
In pH 5.8 acidic medium, the anionic surfactants such as sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) or sodium dodecyl sulfonate (SLS) can react with anthracycline antibiotics such as epirubicin (EPI), daunorubicin (DNR) or mitoxantrone (MXT) to form ion-association complexes, which lead to a great enhancement of resonance Rayleigh scattering (RRS) intensity and appearances of new RRS spectra. The maximum RRS peaks are situated at 313 nm for SDS-DNR and SDS-EPI system, 296 nm for SDS-MXT system. The linear ranges and detection limits for EPI, DNR and MXT are 0.26-20.0, 0.25-20.0, 0.14-10.0 and 0.074, 0.078, 0.042 μg mL−1, respectively. In this paper, the characteristics of the absorption, fluorescence and RRS spectra of the reaction products are studied as well as the optimum reaction conditions and analytical chemistry properties. A sensitive, simple and rapid RRS method for the determination of anthracycline anticancer antibiotics has been developed.  相似文献   

14.
In a weak alkaline Britton-Robinson buffer medium, erythrosine (Ery) can react with Fe(phen)(3)(2+) to form 1:1 ion-association complex, which will cause not only the changes of the absorption spectra, but also the remarkable enhancement of resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering (FDS) spectra, and the appearance of new spectra of RRS, SOS and FDS. The maximum RRS, SOS and FDS wavelengths (λ(ex)/λ(em)) of the ion-association complex are located at 358/358 nm, 290/580 nm and 780/390 nm, respectively. The increments of scattering intensities (ΔI) are directly proportional to the concentration of Ery in a certain range. The detection limits for Ery are 0.028 μg mL(-1) for RRS method, 0.068 μg mL(-1) for SOS method and 0.11 μg mL(-1) for FDS method, respectively. Among them, the RRS method has the highest sensitivity. Based on the above researches, a new highly sensitive and simple method for the determination of Ery has been developed. In this work, the spectral characteristics of absorption, RRS, SOS and FDS spectra, the optimum conditions of the reaction and influencing factors for the RRS, SOS and FDS intensities were investigated. In addition, the reaction mechanism was discussed.  相似文献   

15.
In pH 0.6-1.1 HCl-NaAc buffer solution, torasemide (TOR) reacted with TP to form a 3:1 ion-association complexes. As a result, not only the absorption spectra were changed, but also the intensities of resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering (FDS) were enhanced greatly. The maximum RRS, SOS and FDS wavelengths were located at 370, 333, 776 nm, respectively. Under given conditions, the intensities of RRS, SOS and FDS were all directly proportional to the concentration of TOR. The detection limits of RRS, SOS and FDS were 0.7173 ng mL(-1), 7.007 ng mL(-1) and 10.90 ng mL(-1). The optimum conditions and the effects of coexisting substances on the reaction were investigated. The results showed that the method had good selectivity. Therefore, a highly sensitive, simple and quick method has been developed for the determination of TOR. The method can be applied satisfactorily to the determination of TOR in tablets and urine samples.  相似文献   

16.
Liquid phase gold nanoparticles with different diameters and colors can be prepared using sodium citrate reduction method by controlling the amounts of sodium citrate. The mean diameters of gold nanoparticles are measured by transmission electron microscope (TEM). Gold nanoparticles with different sizes have specific absorption spectra. When the diameters of nanoparticles is between 12 and 41 nm, the maximum absorption peaks locate at 520-530 nm and there are red shifts gradually with the increase of diameters of gold nanoparticles. And when the size of gold nanoparticle is constant, the absorbance is proportional to the concentration of gold. Obvious resonance Rayleigh scattering (RRS) and the resonance non-linear scattering such as second-order scattering (SOS) and frequency-doubling scattering (FDS) appear at the same time as well, and the maximum scattering peaks are located at 286 nm (RRS), 480 nm (SOS) and 310 nm (FDS), respectively. When the concentration of gold is constant, absorbance and the intensities of RRS, SOS and FDS (I(RRS), I(SOS) and I(FDS)) have linear relationships with the diameters of gold nanoparticles. When the diameter of gold nanoparticle is constant, the absorbance and I(RRS), I(SOS), I(FDS) are directly proportional to the concentrations of gold nanoparticles. Therefore, it is very useful for studying the liquid phase gold nanoparticles by investigating the absorption, RRS, SOS and FDS spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号