首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new fluorochromic dye was obtained from the reaction of 9-aminoacridine with ethyl-2-cyano-3-ethoxyacrylate. It displays complex fluorescence that is ascribed to normal emission from the acridine chromophore in addition to excited-state intramolecular charge transfer (ESICT) formed upon light excitation. The analysis of the fluorescence decays in different solvents reveals two short-lived components in the range of 80-450 ps and 0.7-3.2 ns, ascribed to the formation and decay of the intramolecular charge transfer (ICT) state, in addition to a third component of about 9.0 ns, which is related to the normal emission from the acridine singlet excited state, probably in an enol-imine tautomeric form. The ICT emission is readily quenched by water addition to polar solvents, and this effect is ascribed to changes in the keto-amine/enol-imine equilibrium of this fluorochromic dye.  相似文献   

2.
Internal Stark effect (or internal electrochromy) consists of the shift of light absorption and emission bands under the influence of electric field produced by proximal charges. In the studies of 3-hydroxyflavone (3HF) derivatives exhibiting the excited-state intramolecular proton transfer (ESIPT), we describe a new phenomenon - a very strong internal electrochromic modulation of this reaction. Fluorescence spectra of 3HF derivatives with charged groups attached to the chromophore from the opposite sides without pi-electronic conjugation, N-[(4'-diethylamino)-3-hydroxy-6-flavonyl]methyl-N,N-dimethyloctylammonium bromide and 4-[4-[4'-(3-hydroxyflavonyl)]piperazino]-1-(3-sulfopropyl)pyridinium, were compared with those of their neutral analogues in a series of representative solvents. The introduction of the proximal charge results in shifts of absorption spectrum and of both normal (N) and tautomer (T) emission bands, which correspond to initial and phototautomer states of the ESIPT reaction. The observed shifts are in accordance with the Stark effect theory. The direction of the shift depends on the position of the proximal charge with respect to the chromophore. The magnitude of the shift depends strongly on the solvent dielectric constant and on screening or unscreening produced by addition of the hydrophobic salts. In all of these cases, the spectral shifts are accompanied by extremely strong variations of relative intensities of N and T emission bands. This signifies a strong influence of internal electric field on the ESIPT reaction, which produces a dramatic change of emission color. Thus, the coupling of the initial electrochromic sensory signal with the ESIPT reaction allows for the breaking of the limit in magnitude of response inherent to common electrochromic dyes. This suggests a new principle of designing the ultrasensitive electrochromic two-wavelength fluorescence sensors and probes for analytical chemistry, macromolecular science, and cellular biology.  相似文献   

3.
o-Hydroxy analogues, 1a-g, of the green fluorescent protein chromophore have been synthesized. Their structures and electronic properties were investigated by X-ray single-crystal analyses, electrochemistry, and luminescence properties. In solid and nonpolar solvents 1a-g exist mainly as Z conformers that possess a seven-membered-ring hydrogen bond and undergo excited-state intramolecular proton transfer (ESIPT) reactions, resulting in a proton-transfer tautomer emission. Fluorescence upconversion dynamics have revealed a coherent type of ESIPT, followed by a fast vibrational/solvent relaxation (<1 ps) to a twisted (regarding exo-C(5)-C(4)-C(3) bonds) conformation, from which a fast population decay of a few to several tens of picoseconds was resolved in cyclohexane. Accordingly, the proton-transfer tautomer emission intensity is moderate (0.08 in 1e) to weak (~10(-4) in 1a) in cyclohexane. The stronger intramolecular hydrogen bonding in 1g suppresses the rotation of the aryl-alkene bond, resulting in a high yield of tautomer emission (Φ(f) ≈ 0.2). In the solid state, due to the inhibition of exo-C(5)-C(4)-C(3) rotation, intense tautomer emission with a quantum yield of 0.1-0.9 was obtained for 1a-g. Depending on the electronic donor or acceptor strength of the substituent in either the HOMO or LUMO site, a broad tuning range of the emission from 560 (1g) to 670 nm (1a) has been achieved.  相似文献   

4.
Synthesis of a 1,8-naphthyridin-5-one derivative [(5,6,7,8-tetrahydro-(3-chloro-6-hydroxymethyl-8-methyl)-1,8-naphthyridin-5-one (9) ] is described starting from 2-chloronicotinic acid using an intramolecular 1,3-dipolar cycloaddition reaction as the key step.  相似文献   

5.
The influence of solvent, temperature, and viscosity on the phototautomerization processes of a series of o-hydroxyarylbenzazoles was studied by means of ultraviolet-visible (UV-vis) absorption spectroscopy and steady-state and time-resolved fluorescence spectroscopy. The compounds studied were 2-(2'-hydroxyphenyl)benzimidazole (HBI), 2-(2'-hydroxyphenyl)benzoxazole (HBO), 2-(2'-hydroxyphenyl)benzothiazole (HBT), 2-(3'-hydroxy-2'-pyridyl)benzimidazole (HPyBI), and the new derivative 2-(3'-hydroxy-2'-pyridyl)benzoxazole (HPyBO), this one studied in neutral and acid media. All of these compounds undergo an excited-state intramolecular proton transfer (ESIPT) from the hydroxyl group to the benzazole N3 to yield an excited tautomer in syn conformation. A temperature- and viscosity-dependent radiationless deactivation of the tautomer has been detected for all compounds except HBI and HPyBI. We show that this radiationless decay also takes place for 2-(3-methyl-1,3-benzothiazol-3-ium-2-yl)benzenolate (NMeOBT), the N-methylated analog of the tautomer, whose ground-state structure has anti conformation. In ethanol, the radiationless decay shows intrinsic activation energy for HPyBO and HBO; however, it is barrierless for HBT and NMeOBT and controlled instead by the solvent dynamics. The relative efficiency of the radiationless decay in the series of molecules studied supports the hypothesis that this transition is connected with a charge-transfer process taking place in the tautomer, its efficiency being related to the strength of the electron donor (dissociated phenol or pyridinol moiety) and electron acceptor (protonated benzazole). We propose that the charge transfer is associated with a large-amplitude conformational change of the tautomer, the process leading to a nonfluorescent charge-transfer intermediate. The previous ESIPT step generates the structure with the suitable redox pair to undergo the charge-transfer process; therefore, an excited-state intramolecular coupled proton and charge transfer takes place for these compounds.  相似文献   

6.
Based on design and synthesis of salicylideneaniline derivatives(1a-1d),we demonstrate a prototypical system to investigate the excited-state intramolecular charge transfer(ESICT) coupled excited-state intramolecular proton transfer(ESIPT) reaction via the dipolar functionality of the molecular framework. In solid and aprotic solvents 1a-1d exist mainly as E conformers that possess an intramolecular sixmembered -ring hydrogen bond.Compounds 1a-1c exhibit a unique proton-transfer tautomer emission, while compound 1d exhibits remarkable dual emission due to the different solvent-polarity environment between ESICT and ESIPT states.Time-dependent density functional theory(TDDFT) calculations are reported on these Schiff bases in order to rationalize their electronic structure and absorption spectra.  相似文献   

7.
Metal ion function depends on the regulation of properties within the primary and second coordination spheres. An approach toward studying the structure-function relationships within the secondary coordination sphere is to construct a series of synthetic complexes having constant primary spheres but structurally tunable secondary spheres. This was accomplished through the development of hybrid urea-carboxamide ligands that provide varying intramolecular hydrogen bond (H-bond) networks proximal to a metal center. Convergent syntheses prepared ligands [(N'-tert-butylureayl)-N-ethyl]-bis(N' '-R-carbamoylmethyl)amine (H(4)1R) and bis[(N'-tert-butylureayl)-N-ethyl]-(N' '-R-carbamoylmethyl)amine (H(5)2R), where R=isopropyl, cyclopentyl, and (S)-(-)-alpha-methylbenzyl. The ligands with isopropyl groups H(4)1iPr and H(5)2iPr were combined with tris[(N'-tert-butylureayl)-N-ethyl]amine (H6buea) and bis(N-isopropylcarbamoylmethyl)amine (H(3)0iPr) to prepare a series of Co(II) complexes with varying H-bond donors. [CoIIH(2)2iPr]- (two H-bond donors), [CoIIH1iPr]- (one H-bond donor), and [CoII0iPr]- (no H-bond donors) have trigonal monopyramidal primary coordination spheres as determined by X-ray diffraction methods. In addition, these complexes have nearly identical optical and EPR properties that are consistent with S=3/2 ground states. Electrochemical studies show a linear spread of 0.23 V in anodic potentials (Epa) with [CoIIH(2)2iPr]- being the most negative at -0.385 V vs [Cp2Fe]+/[Cp2Fe]. The properties of [CoIIH3buea]- (H3buea, tris[(N'-tert-butylureaylato)-N-ethyl]aminato that has three H-bond donors) appears to be similar to that of the other complexes based on spectroscopic data. [CoIIH3buea]- and [CoIIH(2)2iPr]- react with 0.5 equiv of dioxygen to afford [CoIIIH3buea(OH)]- and [CoIIIH(2)2iPr(OH)]-. Isotopic labeling studies confirm that dioxygen is the source of the oxygen atom in the hydroxo ligands: [CoIIIH3buea(16OH)]- has a -(O-H) band at 3589 cm-1 that shifts to 3579 cm-1 in [CoIIIH3buea(18OH)]-; [CoIIIH(2)2iPr(OH)]- has -(16O-H)=3661 and -(18O-H)=3650 cm-1. [CoIIH1iPr]- does not react with 0.5 equiv of O2; however, treating [CoIIH1iPr]- with excess dioxygen initially produces a species with an X-band EPR signal at g=2.0 that is assigned to a Co-O2 adduct, which is not stable and converts to a species having properties similar to those of the CoIII-OH complexes. Isolation of this hydroxo complex in pure form was complicated by its instability in solution (kint=2.5x10-7 M min-1). Moreover, the stability of the CoIII-OH complexes is correlated with the number of H-bond donors within the secondary coordination sphere; [CoIIIH3buea(OH)]- is stable in solution for days, whereas [CoIIIH(2)2iPr(OH)]- decays with a kint=5.9x10-8 M min-1. The system without any intramolecular H-bond donors [CoII0iPr]- does not react with dioxygen, even when O2 is in excess. These findings indicate a correlation between dioxygen binding/activation and the number of H-bond donors within the secondary coordination sphere of the cobalt complexes. Moreover, the properties of the secondary coordination sphere affect the stability of the CoIII-OH complexes with [CoIIIH3buea(OH)]- being the most stable. We suggest that the greater number of intramolecular H-bonds involving the hydroxo ligand reduces the nucleophilicity of the CoIII-OH unit and reinforces the cavity structure, producing a more constrained microenvironment around the cobalt ion.  相似文献   

8.
Novel bifunctional conjugates 1-3, with varying polymethylene spacer groups, were synthesized, and their DNA interactions have been investigated by various biophysical techniques. The absorption spectra of these systems showed bands in the regions of 300-375 and 375-475 nm, corresponding to acridine and acridinium chromophores, respectively. When compared to 1 (Phi(f) = 0.25), bifunctional derivatives 2 and 3 exhibited quantitative fluorescence yields (Phi(f) = 0.91 and 0.98) and long lifetimes (tau = 38.9 and 33.2 ns). The significant quenching of fluorescence and lifetimes observed in the case of 1 is attributed to intramolecular electron transfer from the excited state of the acridine chromophore to the acridinium moiety. DNA-binding studies through spectroscopic investigations, viscosity, and thermal denaturation temperature measurements indicate that these systems interact with DNA preferentially through intercalation of the acridinium chromophore and exhibit significant DNA association constants (K(DNA) = 10(5)-10(7) M(-1)). Compound 1 exhibits chromophore-selective electron-transfer reactions and DNA binding, wherein only the acridinium moiety of 1 interacts with DNA, whereas optical properties of the acridine chromophore remain unperturbed. Among bifunctional derivatives 2 and 3, the former undergoes DNA mono-intercalation, whereas the latter exhibits bis-intercalation; however both of them interact through mono-intercalation at higher ionic strength. Results of these investigations demonstrate that these novel water-soluble systems, which exhibit quantitative fluorescence yields, chromophore-selective electron transfer, and DNA intercalation, can have potential use as probes in biological applications.  相似文献   

9.
A novel cyclization reaction of ethenetricarboxylate derivative aromatic compounds in the presence of various Lewis acids gave benzo-annulated cyclic compounds such as oxindole and benzofuran derivatives via Friedel-Crafts intramolecular Michael addition in high yields. For example, the reaction of diethyl 2-[(N-methyl-N-phenylcarbamoyl)methylene]malonate (1a) in the presence of ZnCl2 at room temperature gave diethyl 2-(1-methyl-2-oxoindolin-3-yl)malonate (2a) in 98% yield. The reactions also proceeded with a catalytic amount of a Lewis acid such as AlCl3, ZnCl2, ZnBr2, Sc(OTf)3, or InBr3.  相似文献   

10.
A method for the synthesis of [(thiazol-2-ylamino)methylene]bisphosphonic acids from (aminomethylene)-bisphosphonic acid through 3-N-unsubstituted (thioureidomethylene)bisphosphonic acid was proposed.  相似文献   

11.
A chromophore-donor-acceptor assembly [Ru(bpyCOOH)(bpyCH(2)MV(2+)) (bpyCH(2)PTZ)](4+)(1) (where bpyCOOH = 4-carboxylic acid-4'-methyl-2,2'-bipyridine, bpyCH(2)MV(2+) = 1-[(4'-methyl-2,2'-bipyridin-4-yl)methyl]-1'-methyl-4,4'-bipyridinediium, and bpyCH(2)PTZ = 10-[(4'-methyl-2,2'-bipyridin-4-yl)methyl]phenothiazine) has been adsorbed on the surface of nanocrystalline ZrO(2) and its excited state properties studied by emission and transient absorption spectroscopy. In deaerated acetonitrile solution, the complex emits weakly with an emission quantum yield of phi(em) approximately equal to 0.01 with an excited-state lifetime of tau approximately equal to 20 ps. Emission from the surface-adsorbed complex is intense, with phi(em) approximately equal to 0.4 and tau approximately equal to 40 ns. The increase in emission on the surface is likely due to a significant inhibition to the electron-transfer quenching of the metal-to-ligand charge transfer (MLCT) excited state caused by surface adsorption-induced changes in the redox potentials. Transient (nanosecond time scale) absorption monitoring, following laser flash photolysis, reveals the presence of a transient or transients that are formed during the flash. Transient spectral changes that occur during and after the flash are consistent with the formation and decay of the intermediate ZrO(2)-[Ru(bpyCOOH)(bpyCH(2)MV(+*))(bpyCH(2)PTZ(+*))](4+). It returns to the ground state by both intramolecular and intermolecular processes. Intramolecular electron transfer occurs with k(BET) = 6.3 x 10(6) s(-1) (tau = 160 ns), which is comparable to the rate constant for back-electron transfer in solution. The back-electron transfer is a second-order process and is much slower, with k(BET) = 390 M(-1) s(-1) (tau = 2.6 ms).  相似文献   

12.
The mechanism of photoinduced hole injection into DNA has been studied using an integrated approach that combines NMR structural analysis, time-resolved spectroscopy, and quantum-chemical calculations. A covalently linked acridinium derivative, the protonated 9-amino-6-chloro-2-methoxyacridine (X+), is replacing a thymine and separated from either guanine (G) or the easier to oxidize 7-deazaguanine (Z) by one adenine.thymine (A.T) base pair. The key features of this donor/acceptor system are the following: (i) In more than 95% of the duplexes, X+ is located in a central, coplanar position between the neighboring A.T base pairs with its long axis in parallel showing minimal twist and tilt angles (<15 degrees). The complementary adenine base is turned out into the extrahelical space. In a minority of less than 5%, X+ is found to be still attached to the duplex. X+ is most probably associated with one of the phosphates, since it is neither intercalated between more remote base pairs nor bound to sugars or grooves. This minority characterized by an excited state lifetime >10 ns gives rise to a small background signal in time-resolved measurements and contributes predominantly to steady-state fluorescence spectra. (ii) Although the intercalation mode of X+ is well defined, the NMR structure reveals that there are two conformations of X+ with respect to the arrangement of its methoxy substituent. In one conformation, the methoxy group is in the plane of the chromophore, while, in the other extraplanar conformation, the methoxy group forms an angle of 70 degrees with the acridinium ring. The fluorescence decay of 5'-ZAX and 5'-GAX tracts can be fitted to a biexponential function with similar amplitudes, reflecting the oxidation dynamics of G and Z, with the slower rate being determined by larger thermal activation energy. The attribution of biexponential electron transfer (ET) dynamics to the bimodal orientation of the methoxy group at the acridinium is supported by quantum-chemical calculations. These predict a larger free energy change for hole transfer in the nonplanar conformation as compared to the planar one, whereas the difference in the electronic couplings is negligible. (iii) Kinetic studies of the directionality of the 1(X+)* induced hole injection reveal similarly fast decay components in both directions of the duplex, that is, in 5'-ZAX and 5'-XAZ, with the amplitude of the fast component being significantly reduced in 5'-XAZ. The NMR structure shows that local structural deviations from B-DNA are much more pronounced in the 3'-5' direction than in the 5'-3' direction. According to quantum-chemical calculations, the directionality of charge injection is not a universal feature of the DNA duplex but depends critically on the rotation angle of the aromatic plane of the acridinium within the pi stack. The arrangement of X+ in 5'-ZAX and 5'-XAZ corresponds to a conformation with weak directionality of the electronic couplings. The increased disorder in the 3'-5'direction favors slow hole transfer components at the expense of the fast ones. (iv) A comparison of the hole transfer in 5'-GAX and 5'-ZAG shows that classical Marcus theory can explain the ratio of the charge shift rates of more than 2 orders of magnitude on the basis of a free energy difference between G and Z of 0.3 eV. Both NMR structures and quantum-chemical calculations justify the appreciable neglect of differences of electronic couplings as well as in the reorganization energy in 5'-GAX and 5'-ZAG. Despite the attractive concept for the behavior of floppy DNA oligonucleotides, in this acridinium/DNA system, there is no evidence for conformational gating, that is, for fluctuations in the electronic couplings that permit the ET to occur.  相似文献   

13.
The 9-aminoacridine chromophore is an important building block of DNA-targeted chemotherapeutic agents. The success of 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea as a carrier group in cytotoxic platinum-intercalator conjugates prompted us to explore the synthesis of an analogous guanidine-functionalized acridine. In a successful effort to generate such a derivative, various methods of guanidylation were employed, which demonstrate that the acridine C9-N9 linkage is highly susceptible to electrophilic and nucleophilic attack. The newly established reactivities provide efficient pathways to novel cyclic and spirocyclic acridine derivatives.  相似文献   

14.
The phototautomerization mechanism of a model nitro enamine (NEA) chromophore (incorporated in the structure of a highly photolabile pesticide, tetrahydro-2-(nitromethylene)-2H-1,3-thiazine) has been studied using complete active space self-consistent field reaction path computations. The optically accessible 1pipi* excited state of NEA involves separation of charge and correlates diabatically with the ground state of the tautomerized acinitro imine (ANI) form. For optimum photostabilization, the 1pipi* state of NEA should be S1: in this case, the tautomer would be efficiently formed via a diabatic intramolecular proton-transfer pathway passing through an S1/S0 conical intersection, followed by a facile thermal back proton-transfer reaction. However, in NEA itself the lowest excited states correspond to nitro group 1npi* states, and there are additional surface crossings that provide a mechanism for populating the 1npi* manifold. The above results indicate that the high photolability observed for the pesticide [Kleier, D.; Holden, I.; Casida, J. E.; Ruzo, L. O. J. Agric. Food Chem. 1985, 33, 998-1000] has to be ascribed to photochemistry originating on the 1npi* manifold of states, populated indirectly from the 1pipi* state.  相似文献   

15.
The interaction of the cationic dyes acridine, 9-aminoacridine (9AA), and proflavine, with sodium dodecyl sulfate (SDS) was studied by electronic absorption, steady-state and time-resolved fluorescence spectroscopies. The dyes interact with SDS in the pre-micellar region leading in two cases to dimerization in dye-surfactant aggregates, but with distinct molecular arrangements. For proflavine, the observed red shift of the electronic absorption band indicates the presence of J-aggregate, which are nonfluorescent. In the case of 9AA, the aggregates were characterized as nonspecific (neither J- nor H-type is spectroscopically observed). The time-resolved emission spectra gives evidences of the presence of weakly bound dimers by the recovery of three defined decay times by global analysis: dye monomer (tau1 = 16.4 ns), dimer (tau2 = 7.1 ns), and a faster component (tau3 = 2.1 ns) ascribed to intracluster energy migration between monomer and dimer. Acridine has a weak interaction with SDS forming only an ion pair without further self-aggregation of the dye.  相似文献   

16.
We report the synthesis and total NMR characterization of 5-thia-1-azabicyclo-[4.2.0]oct-2-ene-2-carboxylic acid-3-[[[(4'-nitrophenoxy)carbonyl]oxy]-methyl]-8-oxo-7-[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (5), a new cephalosporin derivative. This compound can be used as the carrier of a wide range of drugs containing an amino group. The preparation of the intermediate product, 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino)pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (6), as well as the synthesis of the antimalarial primaquine prodrug 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino)pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]- 5-dioxide (7) are also described, together with their total (1)H- and (13)C-NMR assignments.  相似文献   

17.
3-Hydroxychromones (3HC), exhibit dual emissions highly sensitive to solvent properties due to excited state intramolecular proton transfer (ESIPT). Therefore, 3HCs find wide applications as fluorescence probes in biological systems. Here, it is particularly important to understand the fluorescence behaviour of 3HCs in polar environments. Herein, we studied 3-hydroxyflavone, 2-(2-furyl)-3-hydroxychromone and 2-(2-benzofuryl)-3-hydroxychromone in high polarity solvents characterized by different H-bond donor abilities, donor concentrations and acceptor abilities. Our results show that the dual emissions of the dyes are insensitive to solvent basicity but strongly depend on the two other parameters. Moreover, furyl-and benzofuryl-substituted dyes were significantly more sensitive than the 3-hydroxyflavone to H-bond donor ability, while all three dyes showed roughly equivalent high sensitivity to H-bond donor concentration. These results can be explained by different mechanisms. Thus, the sensitivity of all three dyes to increasing concentrations of H-bond donors probably results from increase in the population of solvated dye with disrupted intramolecular H-bonds. Meantime, the sensitivity to H-bond donor ability of the solvent, observed mainly with furyl and benzofuryl dyes, is probably related to the strength of the H-bonds between the solvent and the 4-carbonyl group of the dye with intact intramolecular H-bonds. The present results provide new insights for further applications of 3HC derivatives as environment-sensitive probes and labels of biological molecules.  相似文献   

18.
有效的染料激光操作需要较高的荧光量子效率,若丹明是在500~700 nm光谱区中一类最重要的激光染料.然而,染料的基态分子和三线态对辐射能量的吸收将会大大降低激光输出效率,再者,由于若丹明类染料在紫外区的吸收系数较小,为了有效吸收泵浦能量(如用XeCI准分子激光,308 nm),就必须使用高浓度染料溶液,在这种情况下,若丹明类染料较小的Stokes位移就势必造成基态分子更大的重复吸收,即造成更大的谐振腔损耗[1].  相似文献   

19.
The local environments surrounding dye molecules were studied with use of coumarin dyes in a mesostructured silica-surfactant nanocomposite, which was formed in a porous alumina membrane by a surfactant-templated method and has an average pore diameter of 3.4 nm. Coumarin dyes, such as coumarin 480 (C480), coumarin 343 (C343), and propylamide coumarin 343 (PAC343), were extracted into the silica-surfactant nanocomposite and time-resolved fluorescence spectra of these dyes were examined. C480 and C343 show slow dynamic Stokes shifts and the decay curve can be fitted by a biexponential function. The decay-time constants obtained from the fitting are almost identical for C480 and C343: 0.87 and 7.5 ns for C480, and 0.86 and 7.6 ns for C343. In contrast to these two coumarin dyes, short decay-time constants (0.50 and 4.8 ns) were obtained for PAC343 in the silica-surfactant nanocomposite. These results indicate that the local environments of C480 and C343 are almost identical but different from that of PAC343. By considering the origin of the dynamic Stokes shift and the mesostructure of the silica-surfactant nanocomposite, the location and microenvironment of coumarin dyes within the silica-surfactant nanocomposite are discussed.  相似文献   

20.
The aggregation-induced emission (AIE) properties of 1,1,2,3,4,5-hexaphenylsilole (HPS) and poly{11-[(1,2,3,4,5-pentaphenylsilolyl)oxy]-1-phenyl-1-undecyne} (PS9PA) were studied by time-resolved fluorescence technique. The enhanced fluorescence and long fluorescent lifetime were obtained for the sample in an aggregate state as compared to the sample in solution. The time-decay of fluorescence of HPS and PS9PA in high viscosity solvents and low-temperature glasses has also been measured in detail to further investigate the possible mechanism for AIE. Enhanced light emission and long fluorescence lifetime were detected for both HPS and PS9PA in the solution-thickening and -cooling experiments. These results provided direct evidence that the enhanced photoluminescence (PL) efficiency is due to restricted intramolecular motion, which ascribes AIE to the deactivation of nonradiative decay caused by restricted torsional motions of the molecules in the solid state or aggregate form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号