首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将弹性细杆的"Kirchhoff动力学比拟"方法推广到弹性薄壳,使弹性薄壳的变形在物理概念上和刚体的运动对应, 在数学表述上等同,从而可以用刚体动力学的理论和方法研究弹性薄壳的变形,为连续的弹性薄壳提供新的离散化方法. 在直法线假设下,在弹性中面上构筑空间正交轴系, 此轴系沿坐标线"运动"的角速度构成两自变量的弯扭度. 沿两个坐标线的弯扭度表达了弹性薄壳的变形和位形,证明了弯扭度之间以及弯扭度与中面切矢间的相容关系. 用Euler角和Lam$\acute{e}$系数表达了非完整约束和中面位形的微分方程,用弯扭度和Lam$\acute{e}$系数表达了应变和应力以及内力及其本构方程.导出了用分布内力集度表达的弹性薄壳在变形后位形上的平衡偏微分方程组,方程的形式与刚体动力学的Euler方程和弹性细杆的Kirchhoff方程具有相似性,实现了Kirchhoff动力学比拟对弹性薄壳的推广.总结了弹性薄壳静力学和刚体动力学以及弹性细杆静力学在概念上的比拟关系.最后给出了一个算例. 为研究弹性薄壳的变形和运动提供新的建模方法和研究思路.也可进一步推广到弹性薄壳动力学.  相似文献   

2.
首先把弹性薄板弯曲问题的控制方程表示成为Hamilton正则方程,然后利用辛几何方法对全状态相变量进行分离变量,求出其本征值后,再按本征函数展开的方法求出矩形悬臂薄板的解析解。由于在求解过程中不需要事先人为地选取挠度函数,而是从薄板弯曲的基本方程出发,直接利用数学的方法求出可以满足其边界条件的这类问题的解析解,使得问题的求解更加理论化和合理化。文中的最后还给出了计算实例来验证本文所采用的方法以及所推导出的公式的正确性。  相似文献   

3.
薛纭  陈立群 《力学学报》2021,53(1):234-247
将弹性细杆的"Kirchhoff动力学比拟"方法推广到弹性薄壳,使弹性薄壳的变形在物理概念上和刚体的运动对应,在数学表述上等同,从而可以用刚体动力学的理论和方法研究弹性薄壳的变形,为连续的弹性薄壳提供新的离散化方法.在直法线假设下,在弹性中面上构筑空间正交轴系,此轴系沿坐标线"运动"的角速度构成两自变量的弯扭度.沿两个...  相似文献   

4.
Summary In this paper an appropriate analytical treatment for the determination, through exact formulae, of large elastic deformations in thin skew-curved rods is presented. This problem is associated with a system of fifteen nonlinear, ordinary, differential equations of the first order; the unknowns of the system are the final curvature and torsion functions, as well as the generalized internal forces and displacements of the rod. Subsequently, the problem of a thin cantilever circular rod subjected to terminal co-planar forces is examined and closed formulae determining its generalized displacements are obtained. Finally, the effectiveness and the potentialities of the method are demonstrated by several numerical applications.
Übersicht In diesem Artikel wird eine analytische Methode zur Bestimmung von großen elastischen Verformungen eines schief gekrümmten Stabes durch exakte Formeln entwickelt. Dieses Problem wird durch ein System von fünfzehn nichtlinearen, gewöhnlichen Differentialgleichungen erster Ordnung beschrieben; die Unbekannten des Systems sind sowohl die endlichen Krümmungs- und Torsionsfunktionen als auch die verallgemeinerten inneren Kräfte und Verschiebungen des Stabes. Ferner wird das Problem des dünnen beidseitig gelagerten zylindrischen Stabes, welcher koplanaren Endlasten unterliegt, untersucht, und geschlossene Formeln werden erhalten. Schließlich werden die Effektivität und die Möglichkeiten der Methode durch mehrere numerische Anwendungen dargestellt.
  相似文献   

5.
A novel superposition method based on the symplectic geometry approach is presented for exact bending analysis of rectangular cantilever thin plates. The basic equations for rectangular thin plate are first transferred into Hamilton canonical equations. By the symplectic geometry method, the analytic solutions to some problems for plates with slidingly supported edges are derived. Then the exact bending solutions of rectangular cantilever thin plates are obtained using the method of superposition. The symplectic superposition method developed in this paper is completely rational compared with the conventional analytical ones because the predetermination of deflection functions, which is indispensable in existing methods, is dispelled.  相似文献   

6.
7.
When a thin elastic structure comes in contact with a liquid interface, capillary forces can be large enough to induce elastic deformations. This effect becomes particularly relevant at small scales where capillary forces are predominant, for example in microsystems (micro-electro-mechanical systems or microfluidic devices) under humid environments. In order to explore the interaction between capillarity and elasticity, we have developed a macroscopic model system in which an initially immersed vertical elastic rod is raised through a horizontal liquid surface. We follow a combined approach of experiments, theory and numerical simulations to study this system. In spite of its apparent simplicity, our experiment reveals a complex phase diagram, involving large hysteretic behaviour. We employ Kirchhoff equations for thin elastic rods and use path-following methods from which we obtain a variety of equilibrium states and associated transitions that are in excellent qualitative and quantitative agreement with those observed experimentally.  相似文献   

8.
张宇  汪权 《计算力学学报》2017,34(6):725-731
为研究双稳态压电俘能系统的相关特性,首先,建立了外界激励作用下双稳态压电悬臂梁俘能系统的等效数学模型;其次,运用谐波平衡法计算获得了系统的动力响应方程,通过绘制的动力响应曲线发现了系统中幅值与功率的解均存在跳跃现象和多解的不稳定区域;最后,分析比较了不同参数对系统动力响应的影响特性。研究结果为优化双稳态压电悬臂梁俘能器的设计和应用提供了理论依据。  相似文献   

9.
We consider the direct approach to the theory of rods, in which the thin body is modelled as a deformable curve with a triad of rigidly rotating orthonormal vectors attached to every material point. In this context, we employ the theory of elastic materials with voids to describe the mechanical behavior of porous rods. First, we derive the dynamical nonlinear field equations of the model. Then, in the framework of linear theory, we prove the uniqueness of the solution to the associated boundary-initial-value problem. We identify the relevant field quantities from the theory of directed curves by comparison with the three-dimensional equations of straight porous rods. Finally, for orthotropic and homogeneous rods, we determine the constitutive coefficients in terms of the three-dimensional elasticity constants by solving several problems in the two different approaches.  相似文献   

10.
The problem of free shape consists in finding the form that an elastic body must have in a natural state in order that it shall assume a given form in an equilibrium configuration under the action of assigned loads. The problem, that is of interest in itself, arises in some practical applications and can constitute a preliminary step in the study of some mechanical properties of classes of equilibrium configurations that are not natural states. This paper examines the problem of free shape for inextensible elastic rods which in equilibrium are subject only to the action of forces and couples applied to the ends, and whose deformations can be described by the theory of finite displacements of thin rods due to Kirchhoff. After the general equations governing the problem have been deduced, they are employed to give a classification of the free shapes of rods that in equilibrium are circular rings.  相似文献   

11.
Limit cycle oscillations (LCO) as well as nonlinear aeroelastic analysis of rectangular cantilever wings with a cubic nonlinearity are investigated. Aeroelastic equations of a rectangular cantilever wing with two degrees of freedom in an incompressible potential flow are presented in the time domain. The harmonic balance method is modified to calculate the LCO frequency and amplitude for rectangular wings. In order to verify the derived formulation, flutter boundaries are obtained via a linear analysis of the derived system of equations for five different cases and compared with experimental data. Satisfactory results are gained through this comparison. The problem of finding the LCO frequency and amplitude is solved via applying the two methods discussed for two different cases with hardening cubic nonlinearities. The results from first-, third- and fifth-order harmonic balance methods are compared with the results of an exact numerical solution. A close agreement is obtained between these harmonic balance methods and the exact numerical solution of the governing aeroelastic equations. Finally, the nonlinear aeroelastic analysis of a rectangular cantilever wing with a softening nonlinearity is studied.  相似文献   

12.
This paper addresses the derivation of finite element modelling for nonlinear dynamics of Cosserat rods with general deformation of flexure, extension, torsion, and shear. A deformed configuration of the Cosserat rod is described by the displacement vector of the deformed centroid curve and an orthogonal moving frame, rigidly attached to the cross-section of the rod. The position of the moving frame relative to the inertial frame is specified by the rotation matrix, parameterised by a rotational vector. The shape functions with up to third order nonlinear terms of generic nodal displacements are obtained by solving the nonlinear partial differential equations of motion in a quasi-static sense. Based on the Lagrangian constructed by the Cosserat kinetic energy and strain energy expressions, the principle of virtual work is employed to derive the ordinary differential equations of motion with third order nonlinear generic nodal displacements. A cantilever is presented as a simple example to illustrate the use of the formulation developed here to obtain the lower order nonlinear ordinary differential equations of motion of a given structure. The corresponding nonlinear dynamical responses of the structures are presented through numerical simulations using the MATLAB software. In addition, a MicroElectroMechanical System (MEMS) device is presented. The developed equations of motion have furthermore been implemented in a VHDL-AMS beam model. Together with available models of the other components, a netlist of the device is formed and simulated within an electrical circuit simulator. Simulation results are verified against Finite Element Analysis (FEA) results for this device.  相似文献   

13.
The general solutions to hyperbolic equations of fourth and sixth order are obtained using Vekua’s method for the representation of the general solutions to elliptic equations of order 2n with the aid of n analytic functions. It is assumed that the right-hand sides of the hyperbolic equations can be expanded in time series of sines. The systems of equations of various approximations for a prismatic thin body in terms of moments with respect to the system of Legendre polynomials can be reduced to these equations and to some hyperbolic-type equations of higher order.  相似文献   

14.
Applying Lagrange–Germain’s theory of elastic thin plates and Hamiltonian formulation, the dynamics of cantilever plates and the problem of its vibration control are studied, and a general solution is finally given. Based on Hamiltonian and Lagrangian density function, we can obtain the flexural wave equation of the plate and the relationship between the transverse and the longitudinal eigenvalues.Based on eigenfunction expansion, dispersion equations of propagation mode of cantilever plates are deduced. By satisfying the boundary conditions of cantilever plates, the natural frequencies of the cantilever plate structure can be given.Then, analytic solution of the problem in plate structure is obtained. An hybrid wave/mode control approach, which is based on both independent modal space control and wave control methods, is described and adopted to analyze the active vibration control of cantilever plates. The low-order(controlled by modal control) and the high-order(controlled by wave control) frequency response of plates are both improved. The control spillover is avoided and the robustness of the system is also improved. Finally, simulation results are analyzed and discussed.  相似文献   

15.
王宇  谷月  李昌  韩清鹏 《力学与实践》2015,37(3):344-349
基于薄壳理论和黏弹性理论, 得出了黏弹性层合悬臂薄壁圆柱壳模态特性的半解析解. 根据乐甫薄壳理论, 建立了基层和黏弹性阻尼层薄壁圆柱壳的一阶状态微分方程, 结合黏弹性阻尼层的变形协调关系和层间作用力关系, 利用传递矩阵法得出了整体结构的传递矩阵, 采用高精度的精细积分法得出了固有频率、模态损耗因子和三维模态振型, 最后通过有限元法进行了比较, 通过算例验证了传递矩阵法对黏弹性层合薄壁圆柱壳模态特性研究的有效性.  相似文献   

16.
In this paper, we consider thin rods modeled by the direct approach, in which the rod-like body is regarded as a one-dimensional continuum (i.e., a deformable curve) with a triad of rigidly rotating orthonormal vectors attached to each material point. In this context, we present a model for porous thermoelastic curved rods, having natural twisting and arbitrary shape of cross-section. To describe the porosity, we employ the theory of elastic materials with voids. The basic laws of thermodynamics are applied directly to the one-dimensional continuum, and the nonlinear governing equations are established. We formulate the constitutive equations and determine the structure of constitutive tensors. We prove the uniqueness of solution to the boundary-initial-value problem associated with the deformation of porous thermoelastic rods in the framework of linear theory. Then, we show the decoupling of the bending-shear and extension-torsion problems for straight porous rods. Using a comparison with three-dimensional equations, we identify and give interpretations to the relevant fields introduced in the direct approach. Finally, we consider the case of orthotropic materials and determine the constitutive coefficients for deformable curves in terms of three-dimensional constitutive constants by means of comparison between simple solutions obtained in the two approaches for porous thermoelastic rods.  相似文献   

17.
康慨  徐鉴 《力学季刊》2015,36(2):189
研究具有支撑参数激励摆系统的支撑结构振动对摆旋转的影响,其中支撑结构是受到扭簧约束的刚性悬臂梁,参数激励摆与刚性悬臂梁的悬臂段铰接.首先,通过拉格朗日方程建立了系统两自由度的动力学方程.其次,利用多尺度法对建立的模型进行理论分析,得到悬臂梁的振动与上摆不同运动形式的关系,从而得到上摆不同运动形式下的参数平面分类和悬臂梁在上摆转动时的振动频响.最后,通过建立实验装置,观察理论预测,实验结果验证了理论分析的正确性.实验与理论对照得到,当参数激励频率接近悬臂梁的一阶固有频率时,悬臂梁的振幅变大,会破坏摆的转动稳定性.  相似文献   

18.
By giving up any assumptions about displacement models and stress distribution, the mixed state Hamilton equation for the axisymmetric problem of the thick laminated closed cantilever cylindrical shells is established. An identical analytical solution is obtained for the thin, moderately thick and thick laminated closed cantilever cylindrical shells. All equations of elasticity can be satisfied, and all elastic constants can be taken into account. This work is supported by the National Natural Science Foundation of China.  相似文献   

19.
The natural vibrations of a cantilever thin elastic orthotropic circular cylindrical shell are studied. Dispersion equations for the determination of possible natural frequencies of cantilever closed shells and open shells with Navier hinged boundary conditions at the longitudinal edges are derived from the classical dynamic theory of orthotropic cylindrical shells. It is proved that there are asymptotic relationships between these problems and the problems for a cantilever orthotropic strip plate and for a cantilever rectangular plate and the eigenvalue problem for a semi-infinite closed orthotropic cylindrical shell with free end and for the same but open shell with Navier hinged boundary conditions at the longitudinal edges. A procedure to identify types of vibrations is presented. Orthotropic cylindrical shells with different radii and lengths are used as an example to find approximate values of the dimensionless natural frequency and damping factor for vibration modes __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 5, pp. 68–91, May 2008.  相似文献   

20.
Characteristic non-linear effects can be observed, when piezoceramics are excited using weak electric fields. In experiments with longitudinal vibrations of piezoceramic rods, the behavior of a softening Duffing-oscillator including jump phenomena and multiple stable amplitude responses at the same excitation frequency and voltage is observed. Another phenomenon is the decrease of normalized amplitude responses with increasing excitation voltages. For such small stresses and weak electric fields as applied in the experiments, piezoceramics are usually described by linear constitutive equations around an operating point in the butterfly hysteresis curve. The non-linear effects under consideration were, e.g. observed and described by Beige and Schmidt [1,2], who investigated longitudinal plate vibrations using the piezoelectric 31-effect. They modeled these non-linearities using higher order quadratic and cubic elastic and electric terms. Typical non-linear effects, e.g. dependence of the resonance frequency on the amplitude, superharmonics in spectra and a non-linear relation between excitation voltage and vibration amplitude were also observed e.g. by von Wagner et al. [3] in piezo-beam systems. In the present paper, the work is extended to longitudinal vibrations of non-slender piezoceramic rods using the piezoelectric 33-effect. The non-linearities are modeled using an extended electric enthalpy density including non-linear quadratic and cubic elastic terms, coupling terms and electric terms. The equations of motion for the system under consideration are derived via the Ritz method using Hamilton's principle. An extended kinetic energy taking into consideration the transverse velocity is used to model the non-slender rods. The equations of motion are solved using perturbation techniques. In a second step, additional dissipative linear and non-linear terms are used in the model. The non-linear effects described in this paper may have strong influence on the relation between excitation voltage and response amplitude whenever piezoceramic actuators and structures are excited at resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号